Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


131 - 140 / 391
First pagePrevious page10111213141516171819Next pageLast page
131.
Cosmic-ray Heavy Nuclei Spectra Using the ISS-CREAM Instrument
S.C. Kang, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) was designed to study high-energy cosmic rays up to PeV and recorded data from August 22nd, 2017 to February 12th, 2019 on the ISS. In this analysis, the Silicon Charge Detector (SCD), CALorimeter (CAL), and Top and Bottom Counting Detectors (TCD/BCD) are used. The SCD is composed of four layers and provides the measurement of cosmic-ray charges with a resolution of ∼0.2e. The CAL comprises 20 interleaved tungsten plates and scintillators, measures the incident cosmic-ray particles' energies, and provides a high energy trigger. The TCD/BCDs consist of photodiode arrays and plastic scintillators and provide a low-energy trigger. In this analysis, the SCD top layer is used for charge determination. Here, we present the heavy nuclei analysis using the ISS-CREAM instrument.
Keywords: ISS-CREAM, silicon charge detector, calorimeter, direct detection, heavy nuclei, cosmic rays, energy spectrum, composition
Published in RUNG: 26.09.2023; Views: 623; Downloads: 5
.pdf Full text (1,82 MB)
This document has many files! More...

132.
Beam Test Results of the ISS-CREAM Calorimeter
H.G. Zhang, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) was installed on the ISS to measure high-energy cosmic-ray elemental spectra for the charge range Z=1 to 26. The ISS-CREAM instrument includes a tungsten scintillating-fiber calorimeter preceded by carbon targets for energy measurements. The carbon targets induces hadronic interactions, and showers of secondary particles develop in the calorimeter. The calorimeter was calibrated with electron beams at CERN. This beam test included position, energy, and angle scans of electron and pion beams together with a high-voltage scan for calibration and characterization. Additionally, an attenuation effect in the scintillating fibers was studied. In this paper, beam test results, including corrections for the attenuation effect, are presented.
Keywords: ISS-CREAM, calorimeter, particle accelerator, CERN, electron beam, direct detection, cosmic rays, energy spectrum, composition
Published in RUNG: 26.09.2023; Views: 657; Downloads: 4
.pdf Full text (1003,73 KB)
This document has many files! More...

133.
Performance study update of observations in divergent mode for the Cherenkov Telescope Array
A. Donini, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: Due to the limited field of view (FoV) of Cherenkov telescopes, the time needed to achieve target sensitivity for surveys of the extragalactic and Galactic sky is large. To optimize the time spent to perform such surveys, a so-called “divergent mode” of the Cherenkov Telescope Array Observatory (CTAO) was proposed as an alternative observation strategy to the traditional parallel pointing. In the divergent mode, each telescope points to a position in the sky that is slightly offset, in the outward direction, from the original center of the field of view. This bring the advantage of increasing the total instantaneous arrays’ FoV. From an enlarged field of view also benefits the search for very-high-energy transient sources, making it possible to cover large sky regions in follow-up observations, or to quickly cover the probability sky map in case of Gamma Ray Bursts (GRB), Gravitational Waves (GW), and other transient events. In this contribution, we present the proposed implementation of the divergent pointing mode and its first preliminary performance estimation for the southern CTAO array.
Keywords: Cherenkov Telescope Array, CTAO, divergent mode, very-high-energy transient sources
Published in RUNG: 26.09.2023; Views: 649; Downloads: 5
.pdf Full text (554,96 KB)
This document has many files! More...

134.
Sensitivity to keV-MeV dark matter from cosmic-ray scattering with current and the upcoming ground-based arrays CTA and SWGO
Igor Reis, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: A wealth of astrophysical and cosmological observational evidence shows that the matter content of the universe is made of about 85% of non-baryonic dark matter. Huge experimental efforts have been deployed to look for the direct detection of dark matter via their scattering on target nucleons, their production in colliders, and their indirect detection via their annihilation products. Inelastic scattering of high-energy cosmic rays off dark matter particles populating the Milky Way halo would produce secondary gamma rays in the final state from the decay of the neutral pions produced in such interactions, providing a new avenue to probe dark matter properties. We compute here the sensitivity for H.E.S.S.-like observatory, a current-generation ground-based Cherenkov telescopes, to the expected gamma-ray flux from collisions of Galactic cosmic rays and dark matter in the center of the Milky Way. We also derive sensitivity prospects for the upcoming Cherenkov Telescope Array (CTA) and Southern Wide-field Gamma-ray Observatory (SWGO). The expected sensitivity allows us to probe a poorly-constrained range of dark matter masses so far, ranging from keV to sub-GeV, and provide complementary constraints on the dark matter-proton scattering cross section traditionally probed by deep underground direct dark matter experiments.
Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Published in RUNG: 26.09.2023; Views: 632; Downloads: 6
.pdf Full text (713,85 KB)
This document has many files! More...

135.
Detecting and characterizing pulsar halos with the Cherenkov Telescope Array Observatory
Christopher Eckner, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: The recently identified source class of pulsar halos may be populated and bright enough at TeV energies to constitute a large fraction of the sources that will be observed with the Cherenkov Telescope Array (CTA), especially in the context of the planned Galactic Plane Survey (GPS). In this study, we examine the prospects offered by CTA for the detection and characterization of such objects. CTA will cover energies from 20 GeV to 300 TeV, bridging the ranges already probed with the Fermi Large Area Telescope and High Altitude Water Cherenkov Observatory, and will also have a better angular resolution than the latter instruments, thus providing a complementary look at the phenomenon. From simple models for individual pulsar halos and their population in the Milky Way, we examine under which conditions such sources can be detected and studied from the GPS observations. In the framework of a full spatial-spectral likelihood analysis, using the most recent estimates for the instrument response function and prototypes for the science tools, we derive the spectral and morphological sensitivity of the CTA GPS to the specific intensity distribution of pulsar halos. From these, we quantify the physical parameters for which pulsar halos can be detected, identified, and characterized, and what fraction of the Galactic population could be accessible. We also discuss the effect of interstellar emission and data analysis systematics on these prospects.
Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Published in RUNG: 26.09.2023; Views: 625; Downloads: 7
.pdf Full text (2,20 MB)
This document has many files! More...

136.
Performance update of an event-type based analysis for the Cherenkov Telescope Array
J. Bernete, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. The traditional approach to data analysis in this field is to apply quality cuts, optimized using Monte Carlo simulations, on the data acquired to maximize sensitivity. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs) to physically interpret the results. However, an alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. This approach divides events into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. In previous works we demonstrated that event types, classified using Machine Learning methods according to their expected angular reconstruction quality, have the potential to significantly improve the CTA angular and energy resolution of a point-like source analysis. Now, we validated the production of event-type wise full-enclosure IRFs, ready to be used with science tools (such as Gammapy and ctools). We will report on the impact of using such an event-type classification on CTA high-level performance, compared to the traditional procedure.
Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Published in RUNG: 26.09.2023; Views: 664; Downloads: 6
.pdf Full text (1,08 MB)
This document has many files! More...

137.
Interpolation of Instrument Response Functions for the Cherenkov Telescope Array in the context of pyirf
R. M. Dominik, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high-energy gamma-ray observatory, constituted by tens of Imaging Atmospheric Cherenkov Telescopes at two sites once its construction and commissioning are finished. Like its predecessors, CTA relies on Instrument Response Functions (IRFs) to relate the observed and reconstructed properties to the true ones of the primary gamma-ray photons. IRFs are needed for the proper reconstruction of spectral and spatial information of the observed sources and are thus among the data products issued to the observatory users. They are derived from Monte Carlo simulations, depend on observation conditions like the telescope pointing direction or the atmospheric transparency and can evolve with time as hardware ages or is replaced. Producing a complete set of IRFs from simulations for every observation taken is a time-consuming task and not feasible when releasing data products on short timescales. Consequently, interpolation techniques on simulated IRFs are investigated to quickly estimate IRFs for specific observation conditions. However, as some of the IRFs constituents are given as probability distributions, specialized methods are needed. This contribution summarizes and compares the feasibility of multiple approaches to interpolate IRF components in the context of the pyirf python software package and IRFs simulated for the Large-Sized Telescope prototype (LST-1). We will also give an overview of the current functionalities implemented in pyirf.
Keywords: Cherenkov Telescope Array, CTA, ground-based very-high-energy gamma-ray observatory, pyirf
Published in RUNG: 26.09.2023; Views: 641; Downloads: 4
.pdf Full text (987,03 KB)
This document has many files! More...

138.
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
Baobiao Yue, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The Fluorescence Detector (FD) of the Pierre Auger Observatory has a large exposure to search for upward-going showers. Constraints have been recently obtained by using 14 years of FD data searching for upward-going showers in the zenith angle range [110◦, 180◦]. In this work, we translate these bounds to upper limits of a possible flux of ultra high energy tau-leptons escaping from the Earth into the atmosphere. Such a mechanism could explain the observation of "anomalous pulses" made by ANITA, that indicated the existence of upward-going air showers with energies above 10[sup]17 eV. As tau neutrinos would be absorbed within the Earth at the deduced angles and energies, a flux of upward-going taus could only be resulted from an unknown type of ultra high energy Beyond Standard Model particle penetrating the Earth with little attenuation, and then creating tau-leptons through interactions within a maximum depth of about 50 km before exiting. We test classes of such models in a generic way and determine upper flux limits of ultra high energy BSM particles as a function of their unknown cross section with matter.
Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, fluorescence detector, upward-going air showers, Beyond Standard Model particles
Published in RUNG: 26.09.2023; Views: 608; Downloads: 6
.pdf Full text (544,10 KB)
This document has many files! More...

139.
The fitting procedure for longitudinal shower profiles observed with the fluorescence detector of the Pierre Auger Observatory
J. A. Bellido, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The Pierre Auger Observatory uses fluorescence telescopes in conjunction with ground level particle detectors to measure high-energy cosmic rays and reconstruct, with greater precision, their arrival direction, their energy and the depth of shower maximum. The depth of shower maximum is important to infer cosmic ray mass composition. The fluorescence detector is capable of directly measuring the longitudinal shower development, which is used to reconstruct the cosmic ray energy and the atmospheric depth of shower maximum. However, given the limited field of view of the fluorescence detector, the shower profile is not always fully contained within the detector observation volume. Therefore, considerations need to be taken in order to reconstruct some events. In this contribution we will describe the method that the Pierre Auger Collaboration uses to reconstruct the longitudinal profiles of showers and present the details of its performance, namely its resolution and systematic uncertainties.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, longitudinal shower profiles
Published in RUNG: 20.09.2023; Views: 741; Downloads: 6
.pdf Full text (827,67 KB)
This document has many files! More...

140.
Searching for very-high-energy electromagnetic counterparts to gravitational-wave events with the Cherenkov Telescope Array
Barbara Patricelli, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, published scientific conference contribution

Abstract: The detection of electromagnetic (EM) emission following the gravitational wave (GW) event GW170817 opened the era of multi-messenger astronomy with GWs and provided the first direct evidence that at least a fraction of binary neutron star (BNS) mergers are progenitors of short Gamma-Ray Bursts (GRBs). GRBs are also expected to emit very-high energy (VHE, > 100 GeV) photons, as proven by the recent MAGIC and H.E.S.S. observations. One of the challenges for future multi-messenger observations will be the detection of such VHE emission from GRBs in association with GWs. In the next years, the Cherenkov Telescope Array (CTA) will be a key instrument for the EM follow-up of GW events in the VHE range, owing to its unprecedented sensitivity, rapid response, and capability to monitor a large sky area via scan-mode operation. We present the CTA GW follow-up program, with a focus on the searches for short GRBs possibly associated with BNS mergers. We investigate the possible observational strategies and we outline the prospects for the detection of VHE EM counterparts to transient GW events.
Keywords: Cherenkov Telescope Array, very-high energy photons, gravitational waves, gravitational wave counterparts
Published in RUNG: 19.09.2023; Views: 710; Downloads: 6
.pdf Full text (1,52 MB)
This document has many files! More...

Search done in 0.07 sec.
Back to top