Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


181 - 190 / 514
First pagePrevious page15161718192021222324Next pageLast page
181.
182.
183.
184.
185.
186.
187.
188.
Lidar Observations of Mountain Waves During Bora Episodes
Longlong Wang, Marija Bervida, Samo Stanič, Klemen Bergant, William Eichinger, Benedikt Strajnar, 2020, published scientific conference contribution

Abstract: Airflows over mountain barriers in the Alpine region may give rise to strong, gusty downslope winds, called Bora. Oscillations, caused by the flow over an orographic barrier, lead to formation of mountain waves. These waves can only rarely be observed visually and can, in general, not be reliably reproduced by numerical models. Using aerosols as tracers for airmass motion, mountain waves were experimentally observed during Bora outbreak in the Vipava valley, Slovenia, on 24-25 January 2019 by two lidar systems: a vertical scanning lidar positioned just below the peak of the lee side of the mountain range and a fixed direction lidar at valley floor, which were set up to retrieve two-dimensional structure of the airflow over the orographic barrier into the valley. Based on the lidar data, we determined the thickness of airmass layer exhibiting downslope motion, observed hydraulic jump phenomena that gave rise to mountain waves and characterized their properties.
Keywords: Bora, mountain waves, lidar observations
Published in RUNG: 08.07.2020; Views: 2769; Downloads: 0
This document has many files! More...

189.
Polarization Raman Lidar for Atmospheric Monitoring in the Vipava Valley
Longlong Wang, Samo Stanič, William Eichinger, Xiaoquan Song, Marko Zavrtanik, 2020, published scientific conference contribution

Abstract: We report on the design, construction and performance of a polarization Raman lidar, built for atmospheric monitoring in the Vipava valley in SW Slovenia, a regional air pollution hot-spot where aerosols are expected to originate from a number of different sources. Its key features are automatized remote operation capability and indoor deployment, which provide high duty cycle in all weather conditions. System optimization and performance studies include the calibration of the depolarization ratio, merging of near-range (analog) and far-range (photon-counting) data, determination of overlap functions and validation of the retrieved observables with radiosonde data.
Keywords: polarization Ramal lidar, Vipava valley, atmospheric monitoring
Published in RUNG: 08.07.2020; Views: 2995; Downloads: 0
This document has many files! More...

190.
Search done in 0.09 sec.
Back to top