Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


11 - 19 / 19
First pagePrevious page12Next pageLast page
11.
Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City
Katja Džepina, R. M. Volkamer, Sasha Madronich, P. Tulet, I. M. Ulbrich, Q. Zhang, C. D. Cappa, P. J. Ziemann, Jose L. Jimenez, 2009, original scientific article

Abstract: Recent field studies have found large discrepancies in the measured vs. modeled SOA mass loadings in both urban and regional polluted atmospheres. The reasons for these large differences are unclear. Here we revisit a case study of SOA formation in Mexico City described by Volkamer et al. (2006), during a photochemically active period when the impact of regional biomass burning is minor or negligible, and show that the observed increase in OA/Delta CO is consistent with results from several groups during MILAGRO 2006. Then we use the case study to evaluate three new SOA models: 1) the update of aromatic SOA yields from recent chamber experiments (Ng et al., 2007); 2) the formation of SOA from glyoxal (Volkamer et al., 2007a); and 3) the formation of SOA from primary semivolatile and intermediate volatility species (P-S/IVOC) (Robinson et al., 2007). We also evaluate the effect of reduced partitioning of SOA into POA (Song et al., 2007). Traditional SOA precursors (mainly aromatics) by themselves still fail to produce enough SOA to match the observations by a factor of similar to similar to 7. The new low-NOx aromatic pathways with very high SOA yields make a very small contribution in this high-NOx urban environment as the RO2 center dot+NO reaction dominates the fate of the RO2 center dot radicals. Glyoxal contributes several mu g m(-3) to SOA formation, with similar timing as the measurements. P-S/IVOC are estimated from equilibrium with emitted POA, and introduce a large amount of gas-phase oxidizable carbon that was not in models before. With the formulation in Robinson et al. (2007) these species have a high SOA yield, and this mechanism can close the gap in SOA mass between measurements and models in our case study. However the volatility of SOA produced in the model is too high and the O/C ratio is somewhat lower than observations. Glyoxal SOA helps to bring the O/C ratio of predicted and observed SOA into better agreement. The sensitivities of the model to some key uncertain parameters are evaluated.
Found in: osebi
Keywords: polycyclic aromatic-hydrocarbons, positive matrix factorization, mass-spectrometry, volatility measurements
Published: 11.04.2021; Views: 990; Downloads: 0
.pdf Fulltext (1,18 MB)

12.
Secondary organic aerosol formation from anthropogenic air pollution
Rainer Volkamer, Jose L. Jimenez, F. M. San Martini, Katja Džepina, Q. Zhang, Dara Salcedo, Luisa T. Molina, D. Worsnop, 2006, original scientific article

Abstract: The atmospheric chemistry of volatile organic compounds (VOCs) in urban areas results in the formation of 'photochemical smog', including secondary organic aerosol (SOA). State-of-the-art SOA models parameterize the results of simulation chamber experiments that bracket the conditions found in the polluted urban atmosphere. Here we show that in the real urban atmosphere reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise. Contrary to current belief, a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products. Global models deem AVOCs a very minor contributor to SOA compared to biogenic VOCs (BVOCs). If our results are extrapolated to other urban areas, AVOCs could be responsible for additional 3 - 25 Tg yr(-1) SOA production globally, and cause up to - 0.1 W m(-2) additional top-of-the-atmosphere radiative cooling.
Found in: osebi
Keywords: atmospheric aerosol, atmospheric chemistry, volatile organic compounds, secondary organic aerosols
Published: 12.04.2021; Views: 1134; Downloads: 0
.pdf Fulltext (638,71 KB)

13.
Evolution of organic aerosols in the atmosphere
J. H. Kroll, P. F. DeCarlo, J. David Allan, H. Coe, Katja Džepina, Jose L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, 2009, original scientific article

Abstract: Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
Found in: osebi
Keywords: secondary organic aerosol, source apportionment, aerodyne aerosol mass spectrometer, global field measurements, laboratory experiments
Published: 11.04.2021; Views: 945; Downloads: 0
.pdf Fulltext (721,30 KB)

14.
Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes
Q. Zhang, Jose L. Jimenez, M. R. Canagaratna, J. David Allan, H. Coe, I. M. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Katja Džepina, 2007, original scientific article

Abstract: Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.
Found in: osebi
Keywords: atmospheric aerosol, secondary organic aerosols, primary organic aerosols, aerodyne aerosol mass spectrometer
Published: 11.04.2021; Views: 973; Downloads: 0
.pdf Fulltext (1,15 MB)

15.
Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer
Katja Džepina, Janet Arey, Linsey C. Marr, D. Worsnop, Dara Salcedo, Q. Zhang, Timothy B. Onasch, Luisa T. Molina, Mario J. Molina, Jose L. Jimenez, 2007, original scientific article

Abstract: We report the quantification of ambient particle-bound polycyclic aromatic hydrocarbons (PAHs) for the first time using a real-time aerosol mass spectrometer. These measurements were carried out during the Mexico City Metropolitan Area field study (MCMA-2003) that took place from March 29 to May 4, 2003. This was the first time that two different fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. This paper focuses on the technical aspects of PAH detection in ambient air with the Aerodyne AMS equipped with a quadrupole mass analyzer (Q-AMS), on the comparison of PAHs measured by the Q-AMS to those measured with the other two techniques, and on some features of the ambient results. PAHs are very resistant to fragmentation after ionization. Based on laboratory experiments with eight PAH standards, we show that their molecular ions, which for most particulate PAHs in ambient particles are larger than 200 amu, are often the largest peak in their Q-AMS spectra. Q-AMS spectra of PAH are similar to those in the NIST database, albeit with more fragmentation. We have developed a subtraction method that allows the removal of the contribution from non-PAH organics to the ion signals of the PAHs in ambient data. We report the mass concentrations of all individual groups of PAHs with molecular weights of 202, 216, 226 + 228, 240 + 242, 250 + 252, 264 + 266, 276 + 278, 288 + 290, 300 + 302, 316 and 326 + 328, as well as their sum as the total PAH mass concentration. The time series of the Photoelectric Aerosol Sensor (PAS) and Q-AMS PAH measurements during MCMA-2003 are well correlated, with the smallest difference between measured PAH concentrations observed in the mornings when ambient aerosols loadings are dominated by fresh traffic emissions. The Q-AMS PAH measurements are also compared to those from GC–MS analysis of filter samples. Several groups of PAHs show agreement within the uncertainties, while the Q-AMS measurements are larger than the GC–MS ones for several others. In the ambient Q-AMS measurements the presence of ions tentatively attributed to cyclopenta[cd]pyrene and dicyclopentapyrenes causes signals at m/z 226 and 250, which are significantly stronger than the signals in GC–MS analysis of filter samples. This suggests that very labile, but likely toxic, PAHs were present in the MCMA atmosphere that decayed rapidly due to reaction during filter sampling, and this may explain at least some of the differences between the Q-AMS and GC–MS measurements.
Found in: osebi
Keywords: AMS, PAH, Mexico City
Published: 11.04.2021; Views: 1058; Downloads: 0
.pdf Fulltext (4,12 MB)

16.
Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with aerosol mass spectrometry
Dara Salcedo, T. B. Onasch, Katja Džepina, M. R. Canagaratna, Qi Zhang, J. A. Huffman, P. F. DeCarlo, J. Jayne, P. Mortimer, D. Worsnop, 2006, original scientific article

Abstract: An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite, during the Mexico City Metropolitan Area field study (MCMA-2003) from 31 March-4 May 2003 to investigate particle concentrations, sources, and processes. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 mu m (NR-PM1) with high time and size-resolution. In order to account for the refractory material in the aerosol, we also present estimates of Black Carbon (BC) using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE) analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a PM2.5 Tapered Element Oscillating Microbalance (TEOM), and a PM2.5 DustTrak Aerosol Monitor) show that the AMS + BC + soil mass concentration is consistent with the total PM2.5 mass concentration during MCMA-2003 within the combined uncertainties. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents, on average, 54.6% (standard deviation sigma=10%) of the mass, with the rest consisting of inorganic compounds ( mainly ammonium nitrate and sulfate/ammonium salts), BC, and soil. Inorganic compounds represent 27.5% of PM2.5 (sigma=10%); BC mass concentration is about 11% (sigma=4%); while soil represents about 6.9% (sigma=4%). Size distributions are presented for the AMS species; they show an accumulation mode that contains mainly oxygenated organic and secondary inorganic compounds. The organic size distributions also contain a small organic particle mode that is likely indicative of fresh traffic emissions; small particle modes exist for the inorganic species as well. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The aerosol seems to be neutralized most of the time; however, there were some periods when there was not enough ammonium to completely neutralize the nitrate, chloride and sulfate present. The diurnal cycle and size distributions of nitrate suggest local photochemical production. On the other hand, sulfate appears to be produced on a regional scale. There are indications of new particle formation and growth events when concentrations of SO2 were high. Although the sources of chloride are not clear, this species seems to condense as ammonium chloride early in the morning and to evaporate as the temperature increases and RH decreases. The total and speciated mass concentrations and diurnal cycles measured during MCMA-2003 are similar to measurements during a previous field campaign at a nearby location.
Found in: osebi
Keywords: aerosol mass-spectrometer, atmospheric aerosol, atmospheric chemistry, atmospheric physics
Published: 12.04.2021; Views: 953; Downloads: 0
.pdf Fulltext (2,53 MB)

17.
Molekularna karakterizacija lebdećih čestica slobodne troposfere sa Opservatorija Pico planine
Sumit Kumar, J. A. Perlinger, D. Helmig, J. Hueber, Swarup China, B. Zhang, R. Chris Owen, Katja Džepina, Claudio Mazzoleni, Paulo Fialho, 2017, published scientific conference contribution abstract

Abstract: Long-range transported free tropospheric aerosol was sampled at the PMO (38°28’15’’N, 28°24’14’’W; 2225 m amsl) on Pico Island of the Azores in the North Atlantic. Filter-collected aerosol during summer 2012 was analysed for organic and elemental carbon, and inorganic ions. The average aerosol ambient concentration was 0.9 µg m-3. Organic aerosol contributed the majority of mass (57%), followed by sulphate (21%) and nitrate (17%). Filter-collected aerosol was positively correlated with on-line aerosol measurements of black carbon, light scattering and number concentration. Water-soluble organic compounds (WSOC) from 9/24 and 9/25 samples collected during a pollution event were analysed with ultrahigh-resolution FT-ICR MS. FLEXPART analysis showed the air masses were very aged (>12 days). ~4000 molecular formulas were assigned to each of the mass spectra between m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. WSOC have an average O/C of ~0.45, relatively low compared to O/C of other aged aerosol, which might be the result of evaporation and fragmentation during long-range transport. The increase in aerosol loading during 9/24 was linked to biomass burning emissions from North America by FLEXPART and MODIS fire counts. This was confirmed with WSOC biomass burning markers and with the morphology and mixing state of particles as determined by SEM. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at Pico had undergone cloud processing. The air masses on 9/25 were more aged (~15 days) and influenced by marine emissions, as indicated by organosulphates and species characteristic for marine aerosol (e.g. fatty acids). The change in air masses for the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by FLEXPART. In this presentation we will presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the PMO.
Found in: osebi
Keywords: Atmospheric aerosol, Free troposphere, Mass spectrometry, Pico mountain observatory
Published: 26.05.2021; Views: 909; Downloads: 0
.pdf Fulltext (8,36 MB)

18.
Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols
Olga Popovicheva, Tuuka Petäjä, Andreas Massling, Jakob K. Nøjgaard, Jean-Luc Jaffrezo, Lin Huang, Heidi Hellén, Hannele Hakola, Wendy Zhang, Mika Vestenius, Henrik Skov, Sangeeta Sharma, Mirko Severi, Jürgen Schnelle-Kreis, Claire E. Moffett, Konstantinos Eleftheriadis, Giulia Calzolai, Silvia Becagli, Wenche Aas, Pragati Rai, Francesco Canonaco, Kaspar R. Daellenbach, Houssni Lamkaddam, Roberto Casotto, Deepika Bhattu, Katja Dzepina, Vaios Moschos, Rebecca J. Sheesley, Rita Traversi, Karl Espen Yttri, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Imad El Haddad, 2022, original scientific article

Abstract: Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.
Found in: osebi
Keywords: Arctic, Organic aerosols, Emission sources, Climate change
Published: 01.03.2022; Views: 404; Downloads: 0
.pdf Fulltext (1,89 MB)

19.
Co-evaporation of doped inorganic carrier selective layers for high-performance inverted planar perovskite solar cells
Qiugui Zeng, Zeyu Fan, Beibei Zhang, Yanbo Li, Jiexuan Jiang, Andraž Mavrič, Nadiia Pastukhova, Matjaž Valant, 2022, original scientific article

Abstract: Inorganic carrier selective layers (CSLs), whose conductivity can be effectively tuned by doping, offer low-cost and stable alternatives for their organic counterparts in perovskite solar cells (PSCs). Herein, we employ a dual-source electron-beam co-evaporation method for the controlled deposition of copper-doped nickel oxide (Cu:NiO) and tungsten-doped niobium oxide (W:Nb2O5) as hole and electron transport layers, respectively. The mechanisms for the improved conductivity using dopants are investigated. Owing to the improved conductivity and optimized band alignment of the doped CSLs, the all-inorganic-CSLs-based PSCs achieves a maximum power conversion efficiency (PCE) of 20.47%. Furthermore, a thin titanium buffer layer is inserted between the W:Nb2O5 and the silver electrode to prevent the halide ingression and improve band alignment. This leads to a further improvement of PCE to 21.32% and a long-term stability (1200 h) after encapsulation. Finally, the large-scale applicability of the doped CSLs by co-evaporation is demonstrated for the device with 1 cm2 area showing a PCE of over 19%. Our results demonstrate the potential application of the co-evaporated CSLs with controlled doping in PSCs for commercialization.
Found in: osebi
Keywords: carrier selective layers, Cu-doped nickel oxide, electron-beam evaporation, perovskite solar cells, W-doped niobium oxide
Published: 17.03.2022; Views: 436; Downloads: 6
.pdf Fulltext (1,38 MB)
This document has many files! More...

Search done in 0 sec.
Back to top