Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 13 / 13
First pagePrevious page12Next pageLast page
11.
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias Stefan, Eich Steffen, Jurij Urbančič, 2016, original scientific article

Abstract: Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2 , our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. Self-amplified photo-induced gap quenching in a correlated electron material. Available from: https://www.researchgate.net/publication/308804379_Self-amplified_photo-induced_gap_quenching_in_a_correlated_electron_material [accessed Apr 20, 2017].
Keywords: high harmonic generation, charge-density wave material, 1T-TiSe2, non-equilibrium electron dynamics, ultrafast surface science
Published in RUNG: 20.04.2017; Views: 5542; Downloads: 0
This document has many files! More...

12.
Detection of gravitational waves : Diploma thesis
Gregor Mrak, 2016, undergraduate thesis

Abstract: This report mainly focuses on the first two detections of gravitational waves (GW). At the beginning of the thesis the historical background of GW explorations is discussed by pointing out some arguments and researchers that were essential for the progress. Continuing with the derivation based on the theory of general relativity, in order to express where certain properties derive. In the main part of the report, the subject of interest becomes Laser interferometer gravitational-wave observatory (LIGO), beginning with the problems occurring on the way to detection, describing different noise sources one by one. After pointing out the problems, solutions are discussed, namely the technological advances made to lower the background noise as much as possible. The chapter (4) points out different parts of the detector which are implemented to produce a clearer signal. As only physical noise reduction methods are not enough, digital signal processing algorithms are mentioned as well which are used to analyze the data. Subsequently the required theoretical knowledge is given, so the main part ends with the analysis of actual data taken from LIGO’s public release for both GW150914 and GW151226 events (first and second official detections). In the conclusion of the report a brief descriptions of various detectors besides Ligo are given and some insight of the future detectors that are planned to be built.
Keywords: Gravitational waves, Ligo, Binary black hole merger, gravitational wave interferometry
Published in RUNG: 27.09.2016; Views: 7047; Downloads: 316
.pdf Full text (3,27 MB)

13.
Properties of Null Hypersurfaces
Hovhannes Demirtshyan, 2016, master's thesis

Abstract: The aim of this thesis is to investigate the effects that a lightlike singular hypersurface can have on a congruence of timelike (spacelike) geodesics and to extend the existing theory to the case of null geodesics. The introduction discusses the applications of singular hypersurfaces for the description of physical phenomena, their major classfications and includes a short discussion of the two theoretical approaches that exist to study singular hypersurfaces. The second chapter contains detailed description of these approaches. The theoretical frameworks for both cases of lightlike and timelike (spacelike) hypersurfaces are developed. This chapter also discusses the application of these theories to the case when the hypersurface contains a plane fronted lightlike signal. The final chapter starts with a discussion of the effects that a lightlike singular hypersurface can have on a congruence of timelike (spacelike) geodesics. A new approach to these calculations is presented together with an extension of the theory to the case of a congruence of null geodesics. At the end of the chapter a concrete example and its similarities with the case of timelike geodesics is discussed. In conclusion, the thesis suggests a new mathematical framework for describing a congruence of null geodesics crossing a singular null hypersurface. The results may be applied in experimental physics to detect impulsive signals which are located in singular null hypersurfaces and to this end there is a discussion of the properties and possibilities for a detector of impulsive lightlike signals, which include gravitational waves.
Keywords: singular hypersurface, impulsive signal, gravitational wave, null geodesic, timelike (spacelike) geodesic
Published in RUNG: 16.05.2016; Views: 7526; Downloads: 261
.pdf Full text (475,54 KB)

Search done in 0.02 sec.
Back to top