Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 20 / 74
First pagePrevious page12345678Next pageLast page
11.
Highlights from the Telescope Array Experiment
J. Kim, Jon Paul Lundquist, 2023, published scientific conference contribution (invited lecture)

Abstract: The Telescope Array (TA) is the largest ultra-high energy cosmic ray (UHECR) observatory in the Northern Hemisphere. Together with the TA Low Energy Extension (TALE), TA×4, and TALE infill detector, the TA measures the properties of UHECR-induced extensive air showers (EAS) in the energy region from 10^15 eV to over 10^20 eV. Each of these uses a hybrid system with an array of scintillators to sample the footprint of the EAS at the Earth’s surface along with telescopes that measure the fluorescence and Cherenkov light from the EAS. The statistics at the highest energies are being enhanced with the TA×4 detector, half completed but still under construction, which will quadruple the surface detector area with telescopes. The TALE infill surface detectors were recently deployed to further lower the hybrid energy threshold of TALE. We present the status of the experiment and recent results on the energy spectrum, mass composition, and anisotropy, including new features in the energy spectrum at about 10^19.2 eV and in the UHECR arrival direction anisotropy.
Keywords: Telescope Array, TALE, low energy extension, TAx4, indirect detection, hybrid detection, ground array, surface detection, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, energy spectrum, composition, anisotropy
Published in RUNG: 10.10.2023; Views: 779; Downloads: 6
.pdf Full text (26,81 MB)
This document has many files! More...

12.
Effect of optical properties of FDs on reconstruction analysis
Daiki Sato, R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, 2023, published scientific conference contribution

Abstract: The TA experiment uses fluorescence telescopes to observe cosmic ray air showers. The telescope camera uses PMTs as Pixels. The telescope’s PMT pointing direction has an uncertainty of 0.1°, and more precise measurements of the telescope's optical properties are needed to more accurately reconstruct the cosmic ray air showers. We have developed the Opt-copter which is a light source mounted on a drone that can be flown within the telescope's field of view. Observational experiments with the Opt-copter have provided a more accurate analysis of the telescope viewing direction. In this study, we estimate the effect of this measurement of accurate telescope viewing direction on the reconstruction of cosmic ray air showers.
Keywords: Telescope Array, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, composition, calibration, Xmax
Published in RUNG: 10.10.2023; Views: 856; Downloads: 6
.pdf Full text (670,84 KB)
This document has many files! More...

13.
Monocular and hybrid analysis for TA×4 fluorescence detectors
Yuki Kusumori, R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, 2023, published scientific conference contribution

Abstract: The TA×4 project is an extension of the Telescope Array (TA) experiment, aimed at clarifying the origin of the highest energy cosmic rays. It has deployed 4 fluorescence detectors (FDs) and 130 surface detectors (SDs) at the northeast lobe of the original TA array and 8 FDs and 127 SDs at the southeast lobe of the original TA array, expanding the detection area about four times larger than the TA experiment. This expansion enables us to sample larger data. The TA×4 has been collecting data to obtain solid evidence of the excess of events in the arrival direction distribution, known as the TA hotspot, reported in 2014 by the TA experiment. The north and south observations began in 2018 and 2019, respectively, and are ongoing except for a hiatus from February to June 2020 due to the COVID-19 pandemic. In this presentation, we will report the details of TA×4 FD monocular analysis.
Keywords: Telescope Array, TAx4, indirect detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, energy spectrum, composition
Published in RUNG: 09.10.2023; Views: 785; Downloads: 6
.pdf Full text (3,20 MB)
This document has many files! More...

14.
Cosmic ray mass composition measurement with the TALE hybrid detector
K. Fujita, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: We report on the cosmic ray mass composition measured by the Telescope Array Low-energy Extension (TALE) hybrid detector. The TALE detector consists of a Fluorescence Detector (FD) station with 10 FD telescopes located at the TA Middle Drum FD Station (itself made up of 14 FD telescopes), and a Surface Detector (SD) array of scintillation counters. The SD array consists of 40 counters with 400 m spacing and 40 counters with 600 m spacing. The FD station, with a total of 24 telescopes, overlooks the SD array and provides sky coverage with an elevation angle range of 3∘ to 59∘. In this contribution, we will present the latest result of the cosmic ray mass composition measurement in the energy range from 10^16.5 eV to 10^18.5 eV using almost 5 years of TALE hybrid data.
Keywords: Telescope Array, TALE, low energy extension, indirect detection, hybrid detection, ground array, infill array, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, composition
Published in RUNG: 09.10.2023; Views: 777; Downloads: 6
.pdf Full text (1,94 MB)
This document has many files! More...

15.
Status and performance of the underground muon detector of the Pierre Auger Observatory
A.M. Botti, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: The Auger Muons and Infill for the Ground Array (AMIGA) is an enhancement of the Pierre Auger Observatory, whose purpose is to lower the energy threshold of the observatory down to 10^16.5 eV, and to measure the muonic content of air showers directly. These measurements will significantly contribute to the determination of primary particle masses in the range between the second knee and the ankle, to the study of hadronic interaction models with air showers, and, in turn, to the understanding of the muon puzzle. The underground muon detector of AMIGA is concomitant to two triangular grids of water-Cherenkov stations with spacings of 433 and 750 m; each grid position is equipped with a 30 m^2 plastic scintillator buried at 2.3 m depth. After the engineering array completion in early 2018 and general improvements to the design, the production phase commenced. In this work, we report on the status of the underground muon detector, the progress of its deployment, and the performance achieved after two years of operation. The detector construction is foreseen to finish by mid-2022.
Keywords: Pierre Auger Observatory, AMIGA, indirect detection, surface detection, ultra-high energy, cosmic rays, composition, muon detection
Published in RUNG: 04.10.2023; Views: 937; Downloads: 5
.pdf Full text (2,21 MB)
This document has many files! More...

16.
A study of analysis method for the identification of UHECR source type
F. Yoshida, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The autocorrelation analysis using the arrival direction of Ultra High Energy Cosmic Rays (UHECRs) has been previously reported by the Telescope Array (TA) experiment. It is expected that the autocorrelation function reflects the source distribution. We simulate the expected arrival direction distribution of the cosmic rays using the catalogs of candidate sources. We take into account random deflection in the magnetic fields, with the magnitude of deflection determined by the charge and energy of the cosmic rays, coherence length and magnitude of the extragalactic magnetic field (EGMF), and by distance to source. In addition, in order to compare with the results of TA experiment, we consider the TA exposure. We compare the autocorrelation of the arrival directions corresponding to different source catalogs with the isotropic distribution. We calculate the autocorrelation function for each type of source candidates using this procedure. We will discuss the ability of this method to identify the source type of UHECRs.
Keywords: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, energy spectrum, composition, anisotropy, autocorrelation, source models, magnetic fields
Published in RUNG: 04.10.2023; Views: 964; Downloads: 7
.pdf Full text (2,71 MB)
This document has many files! More...

17.
Expected performance of the AugerPrime Radio Detector
F. Schlüter, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: The AugerPrime Radio Detector will significantly increase the sky coverage of mass-sensitive measurements of ultra-high energy cosmic rays with the Pierre Auger Observatory. The detection of highly inclined air showers with the world’s largest 3000km^2 radio-antenna array in coincidence with the Auger water-Cherenkov detector provides a clean separation of the electromagnetic and muonic shower components. The combination of these highly complementary measurements yields a strong sensitivity to the mass composition of cosmic rays. We will present the first results of an end-to-end simulation study of the performance of the AugerPrime Radio Detector. The study features a complete description of the AugerPrime radio antennas and reconstruction of the properties of inclined air showers, in particular the electromagnetic energy. The performance is evaluated utilizing a comprehensive set of simulated air showers together with recorded background. The estimation of an energy- and direction-dependent aperture yields an estimation of the expected 10-year event statistics. The potential to measure the number of muons in air showers with the achieved statistics is outlined. Based on the achieved energy resolution, the potential to discriminate between different cosmic-ray primaries is presented.
Keywords: Pierre Auger Observatory, AugerPrime, indirect detection, radio detection, radio antenna array, ultra-high energy, cosmic rays, air-shower muons, composition
Published in RUNG: 04.10.2023; Views: 796; Downloads: 6
.pdf Full text (1,85 MB)
This document has many files! More...

18.
UHECR mass composition from anisotropy of their arrival directions with the Telescope Array SD
M. Kuznetsov, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: We propose a new method for the estimation of ultra-high energy cosmic ray (UHECR) mass composition from a distribution of their arrival directions. The method employs a test statistic (TS) based on a characteristic deflection of UHECR events with respect to the distribution of luminous matter in the local Universe modeled with a flux-weighed 2MRS catalog. Making realistic simulations of the mock UHECR sets, we show that this TS is robust to the presence of galactic and non-extreme extra-galactic magnetic fields and sensitive to the mass composition of events in a set. We apply the method to Telescope Array surface detector data for 11 years and derive new independent constraints on fraction of protons and iron in p-Fe mix at E>10 EeV. At 10100 EeV --- pure iron or even more massive composition. This result is in tension with Auger composition model inferred from spectrum-Xmax fit at 2.7σ (2.0σ) for PT'11 (JF'12) regular GMF model.
Keywords: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, composition, anisotropy, magnetic fields, 2MRS
Published in RUNG: 04.10.2023; Views: 790; Downloads: 5
.pdf Full text (3,02 MB)
This document has many files! More...

19.
Mass composition anisotropy with the Telescope Array Surface Detector data
Y. Zhezher, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: Mass composition anisotropy is predicted by a number of theories describing sources of ultra-high-energy cosmic rays. Event-by-event determination of a type of a primary cosmic-ray particle is impossible due to large shower-to-shower fluctuations, and the mass composition usually is obtained by averaging over some composition-sensitive observable determined independently for each extensive air shower (EAS) over a large number of events. In the present study we propose to employ the observable ξ used in the TA mass composition analysis for the mass composition anisotropy analysis. The ξ variable is determined with the use of Boosted Decision Trees (BDT) technique trained with the Monte-Carlo sets, and the ξ value is assigned for each event, where ξ=1 corresponds to an event initiated by the primary iron nuclei and ξ=−1 corresponds to a proton event. Use of ξ distributions obtained for the Monte-Carlo sets allows us to separate proton and iron candidate events from a data set with some given accuracy and study its distributions over the observed part of the sky. Results for the TA SD 11-year data set mass composition anisotropy will be presented.
Keywords: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, composition, anisotropy, machine learning, boosted decision tree
Published in RUNG: 04.10.2023; Views: 698; Downloads: 5
.pdf Full text (1,14 MB)
This document has many files! More...

20.
The measurements of the cosmic ray energy spectrum and the depth of maximum shower development of Telescope Array Hybrid trigger events
H. Shin, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: The Telescope Array experiment is an ultra-high energy cosmic ray observatory located in Millard County, Utah, USA. The observatory consists of 3 fluorescence detector (FD) stations and 507 surface detectors (SD) that cover an area of ~700 km^2. Hybrid trigger is an external trigger system for the SD arrays that prompts the SD to perform data acquisition when an FD detects a shower-like event. In comparison with the SD autonomous trigger, hybrid trigger allows the SD to collect the data of an air shower that has primary energy below 10^18.5 eV, where the efficiency of SD autonomous trigger decreases rapidly. We present the measurements of the cosmic ray energy spectrum and the depth of maximum shower development of hybrid trigger events observed from October 2010 to September 2014.
Keywords: Telescope Array, indirect detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, energy spectrum, composition
Published in RUNG: 04.10.2023; Views: 796; Downloads: 5
.pdf Full text (1,35 MB)
This document has many files! More...

Search done in 0.06 sec.
Back to top