Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 12
First pagePrevious page12Next pageLast page
1.
Utilizing structurally disordered AlMg-oxide phase in Cu/ZnO catalyst for efficient ▫$CO_2$▫ hydrogenation to methanol
Andraž Mavrič, Gregor Žerjav, Blaž Belec, Matevž Roškarič, Matjaž Finšgar, Albin Pintar, Matjaž Valant, 2023, published scientific conference contribution abstract

Keywords: carbon dioxide, methanol, catalysis
Published in RUNG: 15.09.2023; Views: 739; Downloads: 4
.pdf Full text (99,69 KB)
This document has many files! More...

2.
3.
Winning combination of Cu and Fe oxide clusters with an alumina support for low-temperature catalytic oxidation of volatile organic compounds
Tadej Žumbar, Iztok Arčon, Petar Djinović, Giuliana Aquilanti, Gregor Žerjav, Albin Pintar, Alenka Ristić, Goran Dražić, Janez Volavšek, Gregor Mali, Margarita Popova, Nataša Zabukovec Logar, Nataša Novak Tušar, 2023, original scientific article

Abstract: A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280−450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200−380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal−support bonding and the optimal abundance between Cu−O−Al and Fe−O−Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide−cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir−Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.
Keywords: Iron oxide clusters, copper oxide clusters, alumina support, synergistic effect, low-temperature total catalytic oxidation, toluene, Cu, Fe XANES, EXAFS
Published in RUNG: 06.07.2023; Views: 958; Downloads: 11
.pdf Full text (11,05 MB)
This document has many files! More...

4.
Structural disorder of AlMg-oxide phase supporting Cu/ZnO catalyst improves efficiency and selectivity for ▫$CO_2$▫ hydrogenation to methanol
Andraž Mavrič, Gregor Žerjav, Blaž Belec, Matevž Roškarič, Matjaž Finšgar, Albin Pintar, Matjaž Valant, 2023, original scientific article

Abstract: The performance of the Cu/ZnO catalyst system with the AlMg-oxide phase is studied for CO2 hydrogenation to methanol. The catalyst is prepared by thermal treatment of the hydrotalcite phase containing intimately mixed metal cations in the hydroxide form. CuO in the presence of ZnO and disordered AlMg-oxide phase gets easily reduced to Cu during the hydrogenation reaction. Its catalytic activity at relatively low Cu metal content (∼14 at.%) remains stable during 100 hours on stream at 260 °C with constant space-time yield for methanol (∼1.8 gMeOH gcat−1 h−1) and high methanol selectivity (>85 %) The improved performance is attributed to the neutralization of surface acidity, increased number of weak basic sites in the disordered phase, and lower tendency for coke formation.
Keywords: carbon dioxide hydrogenation, heterogenous catalysis, methanol, reducibility
Published in RUNG: 02.06.2023; Views: 939; Downloads: 12
.pdf Full text (1,12 MB)

5.
In-situ XAS study of catalytic N[sub]2O decomposition over CuO/CeO[sub]2 catalysts
Maxim Zabilsky, Iztok Arčon, Petar Djinović, Elena Tchernychova, Albin Pintar, 2021, original scientific article

Abstract: We performed in‐situ XAS study of N 2 O decomposition over CuO/CeO 2 catalysts. The Cu K‐edge and Ce L 3 ‐edge XANES and EXAFS analyses revealed the dynamic and crucial role of Cu 2+ /Cu + and Ce 4+ /Ce 3+ ionic pairs during the catalytic reaction. We observed the initial formation of reduced Cu + and Ce 3+ species during activation in helium atmosphere at 400 °C, while concentration of these species decreased significantly during steady‐state nitrous oxide degradation reaction (2500 ppm N 2 O in He at 400 °C). In‐situ EXAFS analysis further revealed a crucial role of copper‐ceria interface in this catalytic reaction. We observed dynamic changes in average number of Cu‐Ce scatters under reaction conditions, indicating an enlarging the interface between both copper and ceria phases, where electron and oxygen transfer occurs.
Keywords: in-situ XAS, Cu EXAFS, CuO/CeO2 nanorod catalys, N2O decomposition
Published in RUNG: 29.01.2021; Views: 2875; Downloads: 0
This document has many files! More...

6.
In-situ XAS analysis of nanoshaped CuO/CeO2 catalysts used for N2O decomposition
Iztok Arčon, Maxim Zabilsky, Petar Djinović, Albin Pintar, 2018, published scientific conference contribution abstract

Abstract: The goal of this research is to establish the working state and correlations between atomic structure and catalytic activity of nanoshaped CuO/CeO2 catalysts used in N2O decomposition reaction. The catalysts contained CuO nanoclusters dispersed over different CeO2 morphologies: nano-rods and nano-cubes. N2O is a side product of nitric and adipic acid production and a very potent greenhouse gas that is formed in amounts estimated at about 400 Mt/a of CO2 equivalent. Consequently, the development of robust, active and selective catalysts for N2O decomposition is of a great environmental and economical interest. CeO2-based materials promoted by CuO represent a new class of catalysts that exhibit considerable activity in N2O decomposition reaction between 300 and 500 °C [1-3], and are significantly cheaper and more efficient than Pt, Pd or Rh based catalysts. In order to maximize the efficiency of the catalyst, the active site in this reaction needs to be identified and the mechanism clarified. In-situ Cu K-edge and Ce L3-edge XANES and EXAFS analysis was done on a set of CuO/CeO2 catalysts with different ceria morphology (nano-cubes, nano-rods) and Cu loadings between 2 to 8 wt. %, during N2O decomposition reaction, under controlled reaction conditions at 400 °C. The XAS spectra were measured in-situ, in a tubular reactor, filled with protective He atmosphere at 1 bar, first at RT, then during heating, and at final temperature of 400 °C, during catalytic reaction, when the catalyst was exposed to a small amount (0.2 vol%) of N2O mixed with He. The Cu K-edge and Ce L3-edge XANES and EXAFS analysis reveals changes in valence and local structure of Cu and Ce in the CuO/CeO2 catalysts. In the initial state (in He at RT), copper is present in the form of CuO nanoparticles attached to the CeO2 surface. After heating in He to 400 °C, partial (10%) reduction of Ce [Ce(IV)→Ce(III)] is detected, significant part of Cu(II) is reduced to Cu(I) and Cu(0) species, and direct Cu-Cu bonds are formed. During catalytic N2O decomposition at 400°C, all Ce(III) is oxidized back to Ce(VI), and a major part of Cu is oxidized back to Cu(II), with about 5% of Cu(I) remaining in equilibrium state. Observed structural and valence changes of copper strongly depend on its loading and CeO2 morphology. With systematic In-situ XAS analysis of different nanoshaped CuO/CeO2 catalysts, we identified the structural characteristics and changes of Cu and Ce phases during catalytic N2O decomposition reaction, which could lead to identification of the active catalytic site during the reaction and further improve the performance of these promising catalytic materials.
Keywords: EXAFS, CuO/CeO2 catalyst, N2O decomposition
Published in RUNG: 12.09.2018; Views: 3677; Downloads: 0
This document has many files! More...

7.
Operando XAS analysis of CuO/SiO2 and CuO/CeO2 catalysts
Iztok Arčon, Janvit Teržan, Petar Djinović, Maxim Zabilsky, Albin Pintar, 2018, published scientific conference contribution abstract

Abstract: The possibilities of the operando XAS analysis of catalysts will be presented on two case studies of promising new catalytic materials: alkali doped nano-dispersed copper oxide clusters on ordered mesoporous SiO2, which is highly active and selective towards propylene epoxidation [1], and nanoshaped CuO/CeO2 catalysts used in N2O decomposition reaction [2]. Operando Cu K-edge and Ce L3-edge XANES and EXAFS analysis was performed during catalytic reactions under controlled reaction conditions in a tubular reactor filled with protective He atmosphere at 1 bar. The spectra were measured before the reaction at RT, then during heating, and during catalytic reaction at 400 °C under controlled atmosphere. Operando XANES analysis is used to monitor the changes in valence states and local symmetries of Cu and Ce cations in the catalysts. A partial reduction of Cu2+ to Cu+ and Cu0 and Ce4+ to Ce3+ species was detected during catalyst activation, and re-oxidation during catalytic reaction. Different dynamics of reaching a quasi-steady oxidation state were revealed as the tested catalysts approached the quasi-steady state after 300 min of reaction. Operando EXAFS spectra are used to precisely determine local structure of Cu and Ce cations, to identify structural characteristics and changes of Cu and Ce species during the catalytic reactions. In this way, the active site in the catalytic reactions can be identified and the mechanism of the reaction clarified. The results of operando XAS analyses are crucial to guide further material modification, to obtain more effective catalyst, and material which is more resistant to inhibiting effects that cause catalyst deactivation during catalytic reaction.
Keywords: katalizatorji, Cu XANES, EXAFS
Published in RUNG: 12.09.2018; Views: 3390; Downloads: 0
This document has many files! More...

8.
HETEROGENEOUS PHOTOCATALYTIC OXIDATION FOR THE REMOVAL OF BISPHENOL A FROM AQUEOUS SOLUTION OVER TiO2/GRAPHENE OXIDE (GO) BASED NANOCOMPOSITES
Ana Veternik, 2017, master's thesis

Abstract: Since water is an essential substance for all life on earth, it is therefore vital to prevent its pollution and to improve wastewater purification processes. There is a vast number of pollutants which can contaminate water, of which bisphenol A (known as an endocrine disruptor) is the pollutant studied herein. In this study, several TiO2/GO based nanocomposites with various GO loadings (2, 4, 10, 20 and 40%) and differently shaped nanocrystalline TiO2 phases (titanate nanotubes (TNTs) and calcined titanate nanotubes (TNTs_500)) were synthesised. All of the nanocomposites were characterised through SEM, UV-vis-DR, TGA, BET, FT-IR and CHNS analyses and were used in the heterogeneous photocatalytic degradation of bisphenol A and compared to the activity of pure TNTs and TNT_500 photocatalysts. All TiO2/GO nanocomposites exhibit much better activity than pure TNTs and TNTs_500 catalysts. The conversion of the BPA was analysed using HPLC and the mineralisation was analysed using a TOC analysis. The best experiment was performed with TNTs_500 + 10% GO composite, which can be attributed to the TiO2 crystalline structure obtained. According to the results obtained, TiO2 + 10% GO was found to exhibit the best degradation ratio, which can be ascribed to the fact that excessive GO can act as a charge carrier recombination centre and promotes the recombination of electron-hole pairs in reduced GO.
Keywords: heterogeneous photocatalysis, titanium dioxide, graphene oxide, bisphenol A
Published in RUNG: 23.02.2017; Views: 5721; Downloads: 289
.pdf Full text (2,96 MB)

9.
10.
Strupenost in estrogenost bisfenola A pred in po mokri oksidaciji
Jana Krautberger, 2011, undergraduate thesis

Keywords: bisfenol A, mokra oksidacija, heterogena kataliza, strupenost, estrogenost, diplomske naloge
Published in RUNG: 15.10.2013; Views: 6367; Downloads: 512
URL Link to full text
This document has many files! More...

Search done in 0.06 sec.
Back to top