Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
2.
3.
SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal fromWastewater under Solar Light
Andraž Šuligoj, Jelena Pavlovič, Iztok Arčon, Nevenka Rajić, Nataša Novak Tušar, 2020, original scientific article

Abstract: Due to their adsorbent, ion exchange and catalytic properties zeolites are suitable for a variety of applications. We report on the photocatalytic activity of a readily available and inexpensive natural zeolite clinoptilolite (Z) containing SnO2 (Sn-Z). The Sn-Z samples with 3–15 wt. % of Sn were prepared by using a precipitation–deposition method. Powder X-ray diffraction analysis showed that the zeolite structure was unaffected by the introduction of the Sn-phase. Diffuse reflectance UV/VIS spectra of the Sn-Z samples confirmed the presence of SnO2 and X-Ray absorption spectroscopy analyses suggested that the SnO2 particles mainly resided on the surface of the clinoptilolite, while ATR-FTIR analysis gave some clues that part of the SnO2 phase was incorporated in the pores of the zeolite. The presence of SnO2 in Sn-Z increased both adsorption capacity and photocatalytic performance which could be partially explained by higher surface area and partially with an increased negative potential of the surface. Adsorption and total degradation of methylene blue (MB) for the Sn-Z with the highest amount of Sn (15 wt.%) was about 30% and 45%, respectively, suggesting a synergetic effect between SnO2 and the clinoptilolite lattice. Reusability tests showed that these catalysts present a promising material for water purification.
Keywords: SnO2, zeolite, SnO2-clinoptilolite composite, photocatalysis, solar light, methylene blue removal, wastewater treatment
Published in RUNG: 25.02.2020; Views: 3756; Downloads: 134
.pdf Full text (3,50 MB)

4.
5.
Surface modified titanium dioxide using transition metals : nickel as a winning transition metal for solar light photocatalysis
Andraž Šuligoj, Iztok Arčon, Matjaž Mazaj, Goran Dražić, Denis Arčon, Pegie Cool, Urška Lavrenčič Štangar, Nataša Novak Tušar, 2018, original scientific article

Abstract: Titanium dioxide has been widely used as an antimicrobial agent, UV-filter and catalyst for pollution abatement. Herein, surface modifications with selected transition metals (Me) over colloidal TiO2 nanoparticles and immobilization with a colloidal SiO2 binder as composite films (MeTiO2/SiO2) on a glass carrier were used to enhance solar-light photoactivity. Colloidal TiO2 nanoparticles were modified by loading selected transition metals (Me ¼ Mn, Fe, Co, Ni, Cu, and Zn) in the form of chlorides on their surface. They were present primarily as oxo-nanoclusters and a portion as metal oxides. The structural characteristics of bare TiO2 were preserved up to an optimal metal loading of 0.5 wt%. We have shown in situ that metal-oxo-nanoclusters with a redox potential close to that of O2/O2 were able to function as co-catalysts on the TiO2 surface which was excited by solar-light irradiation. The materials were tested for photocatalytic activity by two opposite methods; one detecting O2 (reduction, Rz ink test) while the other detecting OH (oxidation, terephthalic acid test). It was shown that the enhancement of the solar-light activity of TiO2 by the deposition of transition metal oxo-nanoclusters on the surface depends strongly on the combination of the reduction potential of such species and appropriate band positions of their oxides. The latter prevented excessive self-recombination of the photogenerated charge carriers by the nanoclusters in Ni and Zn modification, which was probably the case in other metal modifications. Overall, only Ni modification had a positive effect on solar photoactivity in both oxidation and reduction reactions.
Keywords: surface modified TiO2, XANES, EXAFS, Nickel, solar light photocatalyst
Published in RUNG: 01.06.2018; Views: 4213; Downloads: 0
This document has many files! More...

6.
7.
Development of Advanced TiO2/SiO2 Photocatalyst for Indoor Air Cleaning
Andraž Šuligoj, 2015, doctoral dissertation

Abstract: TiO2 - SiO2 composites were synthesized by low-temperature sol-gel impregnation method, using four different titania sources (P-25 from Degussa, PC500 from Millennium, CCA 100 AS and CCA 100 BS from Cinkarna, later denoted as AS and BS, respectively) and deposited on aluminium and glass carriers. Ordered and disordered mesoporous silicas were impregnated with ce{TiO2} in powder or suspension form in the Ti : Si molar ratio 1 : 1. Structure, size, band gap, chemical composition and specific surface area of nanoparticles were determined by X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DR-UV-vis), Fourier transform infrared spectroscopy (FT-IR) and ce{N2} physisorption. Additionally, quantity of surface hydroxyl groups, surface acidity and mechanical stability of the coatings were determined by temperature programmed Fourier transform infrared spectroscopy (TPD-IR) and Wolff-Wilborn method, respectively. The photocatalytic activity of TiO2 and TiO2 - SiO2 composites was evaluated in the photodegradation of toluene and formaldehyde, as model VOCs, under UVA light irradiation in lab-made photoreactor system with two different regimes; batch and plug-flow mode. These two VOCs are being considered as examples of two of the six major classes of indoor air contaminants. Adsorption properties of the samples with toluene, have shown that the addition of mesoporous silica was beneficial. The increase of the adsorption of the bare AS TiO2 (9.5 %) was higher in the case of ordered silica, SBA-15 (2.8 times for AS/SBA15 to 26.8 %) than disordered SiO2 KIL-2 (2.4 times for AS/KIL2 to 22.7 %) although it was significant in both types of mesoporous silica supports (over 20 %). Adsorption was found to be dependent mostly on the quantity of surface Si-OH groups. Regarding the photocatalytic activities towards toluene degradation, the results with pure TiO2 showed the fastest kinetics in case of sample AS followed by PC500 and P25. The observed behaviour was ascribed to smaller particle size, and consequently higher specific surface area. Grafting titania onto silica showed the importance of structural parameters. Most importantly, if the pore structure of bare TiO2 collapsed, this resulted in decreased activity. On the other hand, retainment of the pore structure improved the distribution of nanoparticles, crystallinity and optical properties, which resulted in improved photocatalytic activity. In the degradation of formaldehyde, it was found that adsorption and degradation abilities of the materials were much more dependent on the structural properties of the samples, i.e., the pore structure. This was explained as a consequence of the different degradation mechanisms of both pollutants. Toluene degradation is governed by the oxidation through photogenerated holes - direct oxidation, whereas in the degradation of formaldehyde, the major oxidative species are OH radicals. In addition, the same as in toluene oxidation, the activity was dependent mainly on the number of crystal defects and the band gap values, that is the oxidation and reduction potentials of the catalysts. The degradation efficiency was increased from 88 % in pure AS TiO2 to 97 % when this titania was grafted onto colloidal silica (7C). An important highlight of the thesis is synthesis of a novel photocatalyst, labelled AS7C, which comprises an acidic colloidal suspension AS as TiO2 source and colloidal silica, using a low-temperature sol-gel impregnation method. This sample used all the above mentioned properties that improve photocatalytic activity towards both pollutants. Mechanical stability of the samples was also tested. The tests showed that binder, in the form of colloidal SiO2 (in size of 25 nm) in combination with colloidal titania of appropriate size - 6 nm, produced the highest mechanical stability of the coatings, which also showed excellent photocatalytic activity. Stability of the coatings, using AS as titania source, was greatly improved. The Wolff-Wilborn test on AS coating showed no mechanical resistance, while with the optimal (in terms of photocatalytic performance) addition of 7C SiO2 binder stability was excellent (F, which is in the middle of 6B-6H hardness scale). This sample (AS7C) was also tested for release of aerosols, during operation of the reactor, which could be harmful for human health at longer exposure times. It was found that aerosols are formed, probably as a consequence of detachment of nanoparticles in the first period of photodegradation test. However, their formation in consecutive tests was greatly reduced. Last but not least, a pilot plug-flow reactor was constructed to test the photocatalyst's efficiency in one-pass degradation of toluene. Sample AS7C was able to degrade toluene at conditions applied (v= 400 mL/min, m(catalyst) = 1049 mg, C(0) = 1 ppmv), which means that the out-flow from reactor was clean of the pollutant and any possible intermediates, comprising only of humid air and CO2. Deactivation of the catalyst was found at higher air flow and higher initial concentration of the pollutant. However, the concentrations of pollutants in living conditions are few orders of magnitude lower, hence this is a promising result.
Keywords: Air remediation, TiO2 photocatalysis, Immobilization, Thin layers, TiO2/SiO2 composites
Published in RUNG: 31.08.2015; Views: 9417; Downloads: 221
.pdf Full text (33,47 MB)

8.
Search done in 0.03 sec.
Back to top