1. |
2. Surface acidity and basicity of ZnAlGaOx catalysts supportsLaura Milišić, Blaž Belec, Anja Siher, Gregor Žerjav, Albin Pintar, Andraž Mavrič, 2025, published scientific conference contribution abstract Keywords: surface acidity, surface basicity, ZnAlGaOx catalysts, layered double hydroxide, pyridine temperature-programmed desorption, TPD Published in RUNG: 20.03.2025; Views: 351; Downloads: 1
Link to file This document has many files! More... |
3. Narrowband-light-triggered photothermal CO2 desorption from monolithic sorbents : lecture at Institute of Materials for Electronics and Magnetism, Parma, Italy, 18. 3. 2025Blaž Belec, 2025, invited lecture at foreign university Abstract: The widespread deployment of Carbon Capture, Utilisation and Storage (CCUS) technology faces many challenges, where high operating costs are one of the main barriers. While significant research is dedicated to more efficient CO2 sorption, a shortage exists in developing cost-effective desorption methods. The most applied CO2 desorption method is the temperature swing method (TSM), involving heating the entire reactor > 100 °C for extended periods, resulting in high energy consumption.
An alternative approach to reduce energy demand during desorption is utilising light, which, combined with photothermal (PT) nanoparticles, can be converted into heat. Contrary to TMS, the PT approach allows precise and localised gas desorption due to the material’s inherent properties. Since PT nanoparticles display narrow absorption peaks, to achieve maximum PT effect with the lowest given power, precise light sources with concentrated power are required. Still, the main challenge of the PT approach is to reach a temperature > 100 °C for complete CO2 desorption and long-lasting cyclability.
The Peak Absorption Targeted Photothermal Desorption concept is a novel approach which uses low-energy, narrowband light sources—preferably at wavelengths corresponding to the peak absorption (λmax) of thermally stable photothermal (PT)-active monolithic sorbents—to efficiently desorb CO2. By optimizing light-to-heat conversion, this approach aims to achieve complete CO2 desorption with up to 90% less energy consumption compared to traditional thermal management systems (TMS). Keywords: CO2 desorption, photothermal Published in RUNG: 18.03.2025; Views: 350; Downloads: 1
Link to file This document has many files! More... |
4. |
5. |
6. |
7. Hydrazone-linked covalent organic framework catalyst via efficient Pd recovery from wastewaterMahira Bashri, Sushil Kumar, Pallab Bhandari, Sasi Stephen, Matthew J. O'Connor, Safa Gaber, Tina Škorjanc, Matjaž Finšgar, Gisha Elizabeth Luckachan, Blaž Belec, 2024, original scientific article Abstract: Global consumption and discharge of palladium (Pd) have raised environmental concerns but also present an opportunity for the sustainable recovery and reuse of this precious metal. Adsorption has proven to be an efficient method for the selective recovery of Pd from industrial wastewater. This study investigated a hydrazone-linked covalent organic framework (Tfpa-Od COF) as a potential material for the high-affinity adsorption of Pd2+ ions from wastewater, achieving a Kd value of 3.62 × 106 mL g–1. The electron-rich backbone of the COF contributes to its excellent selective removal efficiency (up to 100%) and adsorption capacity of 372.59 mg g–1. Furthermore, the Pd-adsorbed COF was evaluated as a sustainable catalyst for the Suzuki–Miyaura coupling reaction, demonstrating good catalytic conversion and recyclability. This work attempts to showcase a protocol for reusing waste palladium generated in water to fabricate heterogeneous catalysts and, thereby, promote the circular economy concept. Keywords: covalent organic frameworks, sustainability, catalysis, palladium adsorption, water purification Published in RUNG: 22.08.2024; Views: 1341; Downloads: 6
Full text (4,04 MB) This document has many files! More... |
8. |
9. |
10. |