1. e/p separation study using the ISS-CREAM top and bottom counting detectorsS. C. Kang, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, published scientific conference contribution Abstract: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) is an experiment for studying the origin, acceleration, and propagation mechanisms of high-energy cosmic rays. The ISS-CREAM instrument was launched on the 14th of August 2017 to the ISS aboard the SpaceX-12 Dragon spacecraft. The Top and Bottom Counting Detectors (TCD/BCD) are parts of the ISS-CREAM instrument and designed for studying electron and gamma-ray physics. The TCD/BCD each consist of an array of 20 × 20 photodiodes on a plastic scintillator. The TCD/BCD can separate electrons from protons by using the difference between the shapes of electromagnetic and hadronic showers in the high energy region. The Boosted Decision Tree (BDT) method, which is a deep learning method, is used in this separation study. We will present results of the electron/proton separation study and rejection power in various energy ranges. Keywords: instrumentations, high energy cosmic rays, particle detectors, composition Published in RUNG: 08.02.2021; Views: 2856; Downloads: 0 This document has many files! More... |
2. On-orbit performance of the ISS-CREAM calorimeterK. C. Kim, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, published scientific conference contribution Abstract: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment is designed to study the composition and energy spectra of cosmic-ray particles from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The ISS-CREAM payload employs a Silicon Charge Detector for charge measurements, Top and Bottom Counting Detector for electron-hadron separation and a low-energy trigger, a Boronated Scintillator Detector for additional electron-hadron separation, and a Calorimeter (CAL) for en-ergy measurements and a high-energy trigger. The CAL is constructed of 20 layers of tungsten plates interleaved with scintillating fiber ribbons read out by hybrid-photodiodes (HPDs) and densified carbon targets. Each CAL layer is made of 3.5 mm (1 X_0) thick tungsten plates alter-nating with fifty 0.5 mm thick and 1 cm wide scintillating fiber ribbons. Consecutive layers of fiber ribbons are installed orthogonal to each other. Energy deposition in the CAL determines the particle energy and provides tracking information to determine which segment(s) of the charge detectors to use for the charge measurement. Tracking for showers is accomplished by extrapolating each shower axis back to the charge detectors. The performance of the ISS-CREAM CAL during flight is presented. Keywords: instrumentations, high energy cosmic rays, particle detectors Published in RUNG: 08.02.2021; Views: 3123; Downloads: 0 This document has many files! More... |
3. ISS-CREAM flight operationK. C. Kim, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, published scientific conference contribution Abstract: The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) is designed and built to measure the elemental energy spectra of cosmic-ray particles (1 ≤ Z ≤ 26) and electrons. It measures the energy of incident cosmic rays from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The Science Operations Center (SOC) at the University of Maryland has been operating the payload on the International Space Station (ISS) in coordination with the Payload Operations Integration Center (POIC) at NASA’s Marshall Space Flight Center. The SOC has been responsible for sending commands to and receiving data from the Science Flight Computer (SFC) on board ISS-CREAM. The ISS-CREAM data taking program interfaces with the POIC using the Telescience Resources Kit through the Software Toolkit for Ethernet Lab-Like Architecture developed by the Boeing Company. The command uplink and data downlink have been through the Track-ing and Data Relay Satellite System. We present the ISS-CREAM flight operations including ISS communications, SFC performance, etc. Keywords: instrumentations, high energy cosmic rays, particle detectors Published in RUNG: 08.02.2021; Views: 2938; Downloads: 0 This document has many files! More... |
4. On-orbit performance of the ISS-CREAM SCDG. H. Choi, Y. Amarea, D. Angelaszek, N. Anthony, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, published scientific conference contribution Abstract: The Cosmic Ray Energetic And Mass for the International Space Station (ISS-CREAM) experiment is designed for precision measurements of energy spectra and elemental composition of cosmic rays. It was launched and installed on the ISS in August 2017. The Silicon Charge Detector (SCD), placed at the top of the ISS-CREAM payload, consists of 4 layers with a total of 10,752 silicon pixels which have 1.37 × 1.57 cm^2 size each. Each layer is arranged in such a fashion that its active detection area of 78 × 74 cm^2 is free of any dead area. The SCD 4-layer configuration was chosen to achieve the best precision in measuring the charge of cosmic rays from proton to iron nuclei with a charge resolution of 0.1 − 0.3e. We will present its on-orbit performance and operation status on the ISS since the launch. Keywords: instrumentations, high energy cosmic rays, particle detectors Published in RUNG: 08.02.2021; Views: 2877; Downloads: 0 This document has many files! More... |