Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
AutoSourceID-Classifier : star-galaxy classification using a convolutional neural network with spatial information
F. Stoppa, Saptashwa Bhattacharyya, R. Ruiz de Austri, P. Vreeswijk, S. Caron, Gabrijela Zaharijas, S. Bloemen, G. Principe, D. Malyshev, Veronika Vodeb, 2023, original scientific article

Abstract: Aims: Traditional star-galaxy classification techniques often rely on feature estimation from catalogs, a process susceptible to introducing inaccuracies, thereby potentially jeopardizing the classification’s reliability. Certain galaxies, especially those not manifesting as extended sources, can be misclassified when their shape parameters and flux solely drive the inference. We aim to create a robust and accurate classification network for identifying stars and galaxies directly from astronomical images. Methods: The AutoSourceID-Classifier (ASID-C) algorithm developed for this work uses 32x32 pixel single filter band source cutouts generated by the previously developed AutoSourceID-Light (ASID-L) code. By leveraging convolutional neural networks (CNN) and additional information about the source position within the full-field image, ASID-C aims to accurately classify all stars and galaxies within a survey. Subsequently, we employed a modified Platt scaling calibration for the output of the CNN, ensuring that the derived probabilities were effectively calibrated, delivering precise and reliable results. Results: We show that ASID-C, trained on MeerLICHT telescope images and using the Dark Energy Camera Legacy Survey (DECaLS) morphological classification, is a robust classifier and outperforms similar codes such as SourceExtractor. To facilitate a rigorous comparison, we also trained an eXtreme Gradient Boosting (XGBoost) model on tabular features extracted by SourceExtractor. While this XGBoost model approaches ASID-C in performance metrics, it does not offer the computational efficiency and reduced error propagation inherent in ASID-C’s direct image-based classification approach. ASID-C excels in low signal-to-noise ratio and crowded scenarios, potentially aiding in transient host identification and advancing deep-sky astronomy.
Keywords: astronomical databases, data analysis, statistics, image processing
Published in RUNG: 12.12.2023; Views: 1624; Downloads: 6
.pdf Full text (10,31 MB)
This document has many files! More...

2.
Investigating the VHE gamma-ray sources using deep neural networks
Veronika Vodeb, Saptashwa Bhattacharyya, G. Principe, Gabrijela Zaharijas, R. Austri, F. Stoppa, S. Caron, D. Malyshev, 2023, published scientific conference contribution

Abstract: The upcoming Cherenkov Telescope Array (CTA) will dramatically improve the point-source sensitivity compared to the current Imaging Atmospheric Cherenkov Telescopes (IACTs). One of the key science projects of CTA will be a survey of the whole Galactic plane (GPS) using both southern and northern observatories, specifically focusing on the inner galactic region. We extend a deep learning-based image segmentation software pipeline (autosource-id) developed on Fermi-LAT data to detect and classify extended sources for the simulated CTA GPS. Using updated instrument response functions for CTA (Prod5), we test this pipeline on simulated gamma-ray sources lying in the inner galactic region (specifically 0∘Keywords: deep neural network, cosmic-rays, CTA, classification
Published in RUNG: 31.08.2023; Views: 2423; Downloads: 7
.pdf Full text (962,45 KB)
This document has many files! More...

Search done in 0.01 sec.
Back to top