1. Two-dimensional BC tracer model to distinguish between primary and secondary OC : lecture at The European Aerosol Conference 2024, 25. 8.-30. 8. 2024, Tampere, FinlandMatic Ivančič, Asta Gregorič, Gašper Lavrič, Bálint Alföldy, Irena Ježek, Iasonas Stavroulas, Martin Rigler, 2024, unpublished conference contribution Abstract: In this work, we propose an extension of this method. Using the Aethalometer model (Sandradewi et al., 2008), BC as a tracer for primary emitted aerosols can be successfully divided into two components – BCff related to the usage of fossil fuels and BCbb emitted from biomass burning. Because the OC/BC ratio is expected to be different for fossil fuels and biomass burning, we can similarly introduce the two components of POC – a fossil fuel-related POCff and a biomass-burning-related POCbb. Keywords: BC tracer model, secondary organic carbon, black carbon Published in RUNG: 14.11.2024; Views: 904; Downloads: 4
Link to file This document has many files! More... |
2. Highly time-resolved apportionment of carbonaceous aerosols from wildfire using the TC-BC method : camp fire 2018 case studyMatic Ivančič, Martin Rigler, Bálint Alföldy, Gašper Lavrič, Irena Ježek, Asta Gregorič, 2023, original scientific article Keywords: black carbon, brown carbon, carbonaceous aerosol, wildfire, air quality, CASS Published in RUNG: 06.06.2023; Views: 2518; Downloads: 16
Full text (18,34 MB) This document has many files! More... |
3. Two-year-long high-time-resolution apportionment of primary and secondary carbonaceous aerosols in the Los Angeles Basin using an advanced total carbon–black carbon (TC-BC([lambda])) methodMatic Ivančič, Asta Gregorič, Gašper Lavrič Palancsai, Bálint Alföldy, Irena Ježek, Sina Hasheminassab, Payam Pakbin, Faraz Ahangar, Mohammad Sowlat, Steven Boddeker, Martin Rigler, 2022, original scientific article Keywords: carbonaceous aerosols, black carbon, brown carbon, Carbonaceous Aerosol Speciation System Published in RUNG: 04.08.2022; Views: 2720; Downloads: 12
Link to full text This document has many files! More... |
4. Camp Fire 2018: Highly time-resolved study of eOC, eBC and BrC aerosols by the TC-BC (total carbon–black carbon) methodMatic Ivančič, Gašper Lavrič, Asta Gregorič, Balint Alfoldy, Irena Ježek, Jack Connor, Charity Garland, Jonathan P. Bower, Martin Rigler, 2021, published scientific conference contribution abstract Keywords: total carbon, black carbon, brown carbon Published in RUNG: 17.11.2021; Views: 3349; Downloads: 56
Full text (4,62 MB) |
5. The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosolsMartin Rigler, Luka Drinovec, Gašper Lavrič, Anastasia Vlachou, André S. H. Prévôt, Jean-Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Krajnc, Janja Turšič, Anthony D. A. Hansen, Griša Močnik, 2020, original scientific article Abstract: We present a newly developed total carbon analyzer (TCA08) and a method for online speciation of carbonaceous aerosol with a high time resolution. The total carbon content is determined by flash heating of a sample collected on a quartz-fiber filter with a time base between 20 min and 24 h. The limit of detection is approximately 0.3 µg C, which corresponds to a concentration of 0.3 µg C m−3 at a sample flow rate of 16.7 L min−1 and a 1 h sampling time base. The concentration of particulate equivalent organic carbon (OC) is determined by subtracting black carbon concentration, concurrently measured optically by an Aethalometer®, from the total carbon concentration measured by the TCA08. The combination of the TCA08 and Aethalometer (AE33) is an easy-to-deploy and low-maintenance continuous measurement technique for the high-time-resolution determination of equivalent organic and elemental carbon (EC) in different particulate matter size fractions, which avoids pyrolytic correction and the need for high-purity compressed gases. The performance of this online method relative to the standardized off-line thermo-optical OC–EC method and respective instruments was evaluated during a winter field campaign at an urban background location in Ljubljana, Slovenia. The organic-matter-to-organic-carbon ratio obtained from the comparison with an aerosol chemical speciation monitor (ACSM) was OM/OC=1.8, in the expected range. Keywords: total carbon, aeroosl, black carbon, carbonaceous matter Published in RUNG: 17.08.2020; Views: 4453; Downloads: 80
Full text (226,45 KB) |
6. |