Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Sensitivity to keV-MeV dark matter from cosmic-ray scattering with current and the upcoming ground-based arrays CTA and SWGO
Igor Reis, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: A wealth of astrophysical and cosmological observational evidence shows that the matter content of the universe is made of about 85% of non-baryonic dark matter. Huge experimental efforts have been deployed to look for the direct detection of dark matter via their scattering on target nucleons, their production in colliders, and their indirect detection via their annihilation products. Inelastic scattering of high-energy cosmic rays off dark matter particles populating the Milky Way halo would produce secondary gamma rays in the final state from the decay of the neutral pions produced in such interactions, providing a new avenue to probe dark matter properties. We compute here the sensitivity for H.E.S.S.-like observatory, a current-generation ground-based Cherenkov telescopes, to the expected gamma-ray flux from collisions of Galactic cosmic rays and dark matter in the center of the Milky Way. We also derive sensitivity prospects for the upcoming Cherenkov Telescope Array (CTA) and Southern Wide-field Gamma-ray Observatory (SWGO). The expected sensitivity allows us to probe a poorly-constrained range of dark matter masses so far, ranging from keV to sub-GeV, and provide complementary constraints on the dark matter-proton scattering cross section traditionally probed by deep underground direct dark matter experiments.
Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Published in RUNG: 26.09.2023; Views: 1751; Downloads: 8
.pdf Full text (713,85 KB)
This document has many files! More...

Search done in 0.01 sec.
Back to top