Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
An in situ proton filter covalent organic framework catalyst for highly efficient aqueous electrochemical ammonia production
Kayaramkodath C. Ranjeesh, Sukhjot Kaur, Abdul K. Mohammed, Safa Gaber, Divyani Gupta, Khaled Badawy, Mohamed Aslam, Nirpendra Singh, Tina Škorjanc, Matjaž Finšgar, 2023, original scientific article

Abstract: The electrocatalytic nitrogen reduction reaction (NRR) driven by renewable electricity provides a green synthesis route for ammonia (NH3) production under ambient conditions but suffers from a low conversion yield and poor Faradaic efficiency (F.E.) because of strong competition from hydrogen evolution reaction (HER) and the poor solubility of N2 in aqueous systems. Herein, an in situ proton filter covalent organic framework catalyst (Ru-Tta-Dfp) is reported with inherent Ruthenium (Ru) sites where the framework controls reactant diffusion by suppressing proton supply and enhancing N2 flux, causing highly selective and efficient catalysis. The smart catalyst design results in a remarkable ammonia production yield rate of 2.03 mg h−1 mgcat−1 with an excellent F.E. of ≈52.9%. The findings are further endorsed with the help of molecular dynamics simulations and control COF systems without in situ proton filter feasibility. The results point to a paradigm shift in engineering high-performance NRR electrocatalysts for more feasible green NH3 production.
Keywords: covalent organic frameworks, ammonia, electrochemical synthesis, electrochemistry, nitrogen reduction reaction, ruthenium
Published in RUNG: 11.12.2023; Views: 538; Downloads: 5
.pdf Full text (2,77 MB)
This document has many files! More...

2.
A rational design of isoindigo-based conjugated microporous n-type semiconductors for high electron mobility and conductivity
Kayaramkodath C. Ranjeesh, Ayman Rezk, Jose Ignacio Martinez, Safa Gaber, Areej Merhi, Tina Škorjanc, Matjaž Finšgar, Gisha Elizabeth Luckachan, Ali Trabolsi, Bilal R. Kaafarani, 2023, original scientific article

Abstract: The development of n-type organic semiconductors has evolved significantly slower in comparison to that of p-type organic semiconductors mainly due to the lack of electron-deficient building blocks with stability and processability. However, to realize a variety of organic optoelectronic devices, high-performance n-type polymer semiconductors are essential. Herein, conjugated microporous polymers (CMPs) comprising isoindigo acceptor units linked to benzene or pyrene donor units (BI and PI) showing n-type semiconducting behavior are reported. In addition, considering the challenges of deposition of a continuous and homogeneous thin film of CMPs for accurate Hall measurements, a plasma-assisted fabrication technique is developed to yield uniform thin films. The fully conjugated 2D networks in PI- and BI-CMP films display high electron mobility of 6.6 and 3.5 cm2 V−1 s−1, respectively. The higher carrier concentration in PI results in high conductivity (5.3 mS cm−1). Both experimental and computational studies are adequately combined to investigate structure–property relations for this intriguing class of materials in the context of organic electronics.
Keywords: conjugated microporous polymers, isoindigo, semiconductors, conductivity, electron mobility
Published in RUNG: 18.08.2023; Views: 789; Downloads: 7
.pdf Full text (2,08 MB)
This document has many files! More...

Search done in 0.01 sec.
Back to top