1. Investigating the use of secondary organic aerosol as seed particles in simulation chamber experimentsJaqueline F Hamilton, M Rami Alfarra, Kevin P Wyche, Martyn W Ward, Alistair C Lewis, Gordon B McFiggans, Nicholas Good, Paul S Monks, Timo Carr, Iain R. White, Ruth M Purvis, 2011, original scientific article Abstract: The use of β-caryophyllene secondary organic aerosol particles as seeds for smog chamber simulations has been investigated. A series of experiments were carried out in the Manchester photochemical chamber as part of the Aerosol Coupling in the Earth System (ACES) project to study the effect of seed particles on the formation of secondary organic aerosol (SOA) from limonene photo-oxidation. Rather than use a conventional seed aerosol containing ammonium sulfate or diesel particles, a method was developed to use in-situ chamber generated seed particles from β-caryophyllene photo-oxidation, which were then diluted to a desired mass loading (in this case 4-13 μg m-3). Limonene was then introduced into the chamber and oxidised, with the formation of SOA seen as a growth in the size of oxidised organic seed particles from 150 to 325 nm mean diameter. The effect of the partitioning of limonene oxidation products onto the seed aerosol was assessed using aerosol mass spectrometry during the experiment and the percentage of m/z 44, an indicator of degree of oxidation, increased from around 5 to 8 %. The hygroscopicity of the aerosol also changed, with the growth factor for 200 nm particles increasing from less than 1.05 to 1.25 at 90 % RH. The detailed chemical composition of the limonene SOA could be extracted from the complex β-caryophyllene matrix using two-dimensional gas chromatography (GC× GC) and liquid chromatography coupled to mass spectrometry. High resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) was used to determine exact molecular formulae of the seed and the limonene modified aerosol. The average O:C ratio was seen to increase from 0.32 to 0.37 after limonene oxidation products had condensed onto the organic seed. Keywords: Aerosol, Aerosol formation, Smog chamber Published in RUNG: 18.07.2019; Views: 3918; Downloads: 0 This document has many files! More... |
2. Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysisMarie Camredon, Jacqueline F Hamilton, Mohammed S Alam, Kevin P Wyche, Timo Carr, Iain R. White, Paul S Monks, Andrew R Rickard, William J Bloss, 2010, original scientific article Abstract: Secondary Organic Aerosol (SOA) affects atmospheric composition, air quality and radiative transfer, however major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE) simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Ion Trap Mass Spectrometry and Liquid Chromatography. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method, and the potential influence of condensed phase chemistry. Comparisons of the simulated gaseous-and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i) propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species, (ii) provide evidence for the occurrence of recently suggested radical isomerisation channels not included in the basic model, and (iii) explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra Keywords: Aerosol, Aerosol formation, Smog chamber Published in RUNG: 18.07.2019; Views: 3733; Downloads: 0 This document has many files! More... |