2.
Molecular and physical characteristics of aerosol at a remote free troposphere site : implications for atmospheric agingSimeon K. Schum,
Bo Zhang,
Katja Džepina,
Paulo Fialho,
Claudio Mazzoleni,
Lynn R. Mazzoleni, 2018, original scientific article
Abstract: Aerosol properties are transformed by atmospheric processes during long-range transport and play a key role in the Earth’s radiative balance. To understand the molecular and physical characteristics of free tropospheric aerosol, we studied samples collected at the Pico Mountain Observatory in the North Atlantic. The observatory is located in the marine free troposphere at 2225m above sea level, on Pico Island in the Azores archipelago. The site is ideal for the study of long-range-transported free tropospheric aerosol with minimal local influence. Three aerosol samples with elevated organic carbon concentrations were selected for detailed analysis. FLEXPART retroplumes indicated that two
of the samples were influenced by North American wildfire
emissions transported in the free troposphere and one by
North American outflow mainly transported within the marine
boundary layer. Ultrahigh-resolution Fourier transform
ion cyclotron resonance mass spectrometry was used to determine
the detailed molecular composition of the samples.
Thousands of molecular formulas were assigned to each of
the individual samples. On average ~60% of the molecular
formulas contained only carbon, hydrogen, and oxygen
atoms (CHO), ~ 30% contained nitrogen (CHNO), and
~ 10% contained sulfur (CHOS). The molecular formula
compositions of the two wildfire-influenced aerosol samples
transported mainly in the free troposphere had relatively low
average O=C ratios (0:48 ± 0:13 and 0:45 ± 0:11) despite the
7–10 days of transport time according to FLEXPART. In contrast,
the molecular composition of the North American outflow
transported mainly in the boundary layer had a higher
average O=C ratio (0:57 ± 0:17) with 3 days of transport time.
To better understand the difference between free tropospheric
transport and boundary layer transport, the meteorological
conditions along the FLEXPART simulated transport pathways
were extracted from the Global Forecast System analysis
for the model grids. We used the extracted meteorological
conditions and the observed molecular chemistry to predict
the relative-humidity-dependent glass transition temperatures
(Tg) of the aerosol components. Comparisons of the
Tg to the ambient temperature indicated that a majority of
the organic aerosol components transported in the free troposphere were more viscous and therefore less susceptible to
oxidation than the organic aerosol components transported
in the boundary layer. Although the number of observations
is limited, the results suggest that biomass burning organic
aerosol injected into the free troposphere is more persistent
than organic aerosol in the boundary layer having broader
implications for aerosol aging.
Keywords: secondary organic aerosols, brown carbon, particle dispersion model, ultrahigh-resolution FT-ICR MS, Pico Mountain Observatory
Published in RUNG: 10.04.2021; Views: 2988; Downloads: 0
This document has many files! More...