1. Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens) : a high temporal-resolution chemical composition measurement studyIasonas Stavroulas, Aikaterini Bougiatioti, Georgios Grivas, D. Paraskevopoulou, M. Tsagkaraki, Pavlos Zarmpas, Eleni Liakakou, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2019, original scientific article Abstract: Submicron aerosol chemical composition was studied during a year-long
period (26 July 2016–31 July 2017) and two wintertime intensive campaigns
(18 December 2013–21 February 2014 and 23 December 2015–17 February 2016),
at a central site in Athens, Greece, using an Aerosol Chemical Speciation
Monitor (ACSM). Concurrent measurements included a particle-into-liquid
sampler (PILS-IC), a scanning mobility particle sizer (SMPS), an AE-33
Aethalometer, and ion chromatography analysis on 24 or 12 h filter samples.
The aim of the study was to characterize the seasonal variability of the main
submicron aerosol constituents and decipher the sources of organic aerosol
(OA). Organics were found to contribute almost half of the submicron mass,
with 30 min resolution concentrations during wintertime reaching up to
200 µg m−3. During winter (all three campaigns combined),
primary sources contributed about 33 % of the organic fraction, and comprised
biomass burning (10 %), fossil fuel combustion (13 %), and cooking
(10 %), while the remaining 67 % was attributed to secondary aerosol.
The semi-volatile component of the oxidized organic aerosol (SV-OOA;
22 %) was found to be clearly linked to combustion sources, in
particular biomass burning; part of the very oxidized,
low-volatility component (LV-OOA; 44 %) could also be attributed to the
oxidation of emissions from these primary combustion sources. These results, based on the combined contribution of biomass burning organic
aerosol (BBOA) and SV-OOA, indicate the importance of increased biomass
burning in the urban environment of Athens as a result of the economic recession.
During summer, when concentrations of fine aerosols are considerably lower,
more than 80 % of the organic fraction is attributed to secondary aerosol
(SV-OOA 31 % and LV-OOA 53 %). In contrast to winter, SV-OOA appears
to result from a well-mixed type of aerosol that is linked to fast photochemical
processes and the oxidation of primary traffic and biogenic emissions.
Finally, LV-OOA presents a more regional character in summer, owing to the
oxidation of OA over the period of a few days. Keywords: ACSM, organic aerosol, PMF, source apportionment Published in RUNG: 13.05.2024; Views: 965; Downloads: 5 Full text (4,65 MB) This document has many files! More... |
2. Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, GreeceEleni Liakakou, Iasonas Stavroulas, Dimitris G. Kaskaoutis, Georgios Grivas, D. Paraskevopoulou, Umesh Chandra Dumka, M. Tsagkaraki, Aikaterini Bougiatioti, K. Oikonomou, J. Sciare, 2020, original scientific article Abstract: This study aims to delineate the characteristics of Black Carbon (BC) in the atmosphere over Athens, Greece, using 4-year (May 2015–April 2019) Aethalometer (AE-33) measurements. The average BC concentration is 1.9 ± 2.5 μg m−3 (ranging from 0.1 to 32.7 μg m−3; hourly values), with a well-defined seasonality from 1.3 ± 1.1 μg m−3 in summer to 3.0 ± 4.0 μg m−3 in winter. Pronounced morning and evening/night peaks are found in the BC concentrations in winter, while during the rest of the seasons, this diurnal cycle appears to flatten out, with the exception of the morning traffic peak. On an annual basis, the biomass-burning fraction (BB%) of BC accounts for 22 ± 12%, while the fossil-fuel combustion (BCff) component (traffic emissions and domestic heating) dominates during summer (83%) and in the morning hours. BCwb exhibits higher contribution in winter (32%), especially during the night hours (39%). BC levels are effectively reduced by precipitation, while they significantly build-up for wind speeds <3 m s−1 and mixing-layer height (MLH) < 500 m. Normalizing the BC diurnal course by the MLH variations on a seasonal basis reveals that the residential wood-burning emissions are mostly responsible for the large BC increase during winter nights, whereas the low BC levels during daytime in the warm season are mainly attributed to dilution into a deeper MLH. BCwb is highly correlated with other BB tracers during winter nights (e.g. levoglucosan, non-sea-salt-K+, m/z 60 fragment), as well as with the fine fraction (PM2.5) OC and EC. The Delta-C, which represents the spectral dependence of BC as the absorption difference between 370 and 880 nm, is analyzed for the first time in Athens. It exhibits a pronounced seasonality with maximum values in winter night-time, and it appears as a valid qualitative marker for wood combustion. Keywords: black carbon, wood burning, source apportionment, mixing layer, biomass burning tracers, Athens Published in RUNG: 10.05.2024; Views: 926; Downloads: 2 Link to file |
3. Long-term brown carbon spectral characteristics in a Mediterranean city (Athens)Eleni Liakakou, Dimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, M. Tsagkaraki, D. Paraskevopoulou, Aikaterini Bougiatioti, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2020, original scientific article Abstract: This study analyses 4-years of continuous 7-λ Aethalometer (AE-33) measurements in an urban-background environment of Athens, to resolve the spectral absorption coefficients (babs) for black carbon (BC) and brown carbon (BrC). An important BrC contribution (23.7 ± 11.6%) to the total babs at 370 nm is estimated for the period May 2015–April 2019, characterized by a remarkable seasonality with winter maximum (33.5 ± 13.6%) and summer minimum (18.5 ± 8.1%), while at longer wavelengths the BrC contribution is significantly reduced (6.8 ± 3.6% at 660 nm). The wavelength dependence of the total babs gives an annual-mean AAE370-880 of 1.31, with higher values in winter night-time. The BrC absorption and its contribution to babs presents a large increase reaching up to 39.1 ± 13.6% during winter nights (370 nm), suggesting residential wood burning (RWB) emissions as a dominant source for BrC. This is supported by strong correlations of the BrC absorption with OC, EC, the fragment ion m/z 60 derived from ACSM and PMF-analyzed organic fractions related to biomass burning (e.g. BBOA). In contrast, BrC absorption decreases significantly during daytime as well as in the warm period, reaching to a minimum during the early-afternoon hours in all seasons due to photo-chemical degradation. Estimated secondary BrC absorption is practically evident only during winter night-time, implying the fast oxidation of BrC species from RWB emissions. Changes in mixing-layer height do not significantly affect the BrC absorption in winter, while they play a major role in summer. Keywords: spectral aerosol absorption, brown carbon, wood burning, organic aerosols, chemical composition, Athens Published in RUNG: 10.05.2024; Views: 1185; Downloads: 2 Link to file |
4. Carbonaceous aerosols in contrasting atmospheric environments in Greek cities : evaluation of the EC-tracer methods for secondary organic carbon estimationDimitris G. Kaskaoutis, Georgios Grivas, Christina Theodosi, M. Tsagkaraki, D. Paraskevopoulou, Iasonas Stavroulas, Eleni Liakakou, Antonis Gkikas, Nikolaos Hatzianastassiou, Cheng Wu, 2020, original scientific article Abstract: This study examines the carbonaceous-aerosol characteristics at three contrasting urban environments in Greece (Ioannina, Athens, and Heraklion), on the basis of 12 h sampling during winter (January to February 2013), aiming to explore the inter-site differences in atmospheric composition and carbonaceous-aerosol characteristics and sources. The winter-average organic carbon (OC) and elemental carbon (EC) concentrations in Ioannina were found to be 28.50 and 4.33 µg m−3, respectively, much higher than those in Heraklion (3.86 µg m−3 for OC and 2.29 µg m−3 for EC) and Athens (7.63 µg m−3 for OC and 2.44 µg m−3 for EC). The winter OC/EC ratio in Ioannina (6.53) was found to be almost three times that in Heraklion (2.03), indicating a larger impact of wood combustion, especially during the night, whereas in Heraklion, emissions from biomass burning were found to be less intense. Estimations of primary and secondary organic carbon (POC and SOC) using the EC-tracer method, and specifically its minimum R-squared (MRS) variant, revealed large differences between the sites, with a prevalence of POC (67–80%) in Ioannina and Athens and with a larger SOC fraction (53%) in Heraklion. SOC estimates were also obtained using the 5% and 25% percentiles of the OC/EC data to determine the (OC/EC)pri, leading to results contrasting to the MRS approach in Ioannina (70–74% for SOC). Although the MRS method provides generally more robust results, it may significantly underestimate SOC levels in environments highly burdened by biomass burning, as the fast-oxidized semi-volatile OC associated with combustion sources is classified in POC. Further analysis in Athens revealed that the difference in SOC estimates between the 5% percentile and MRS methods coincided with the semi-volatile oxygenated organic aerosol as quantified by aerosol mass spectrometry. Finally, the OC/Kbb+ ratio was used as tracer for decomposition of the POC into fossil-fuel and biomass-burning components, indicating the prevalence of biomass-burning POC, especially in Ioannina (77%). Keywords: carbonaceous aerosols, inorganic species, POC-SOC estimation, biomass burning, MRS method, Greece Published in RUNG: 10.05.2024; Views: 792; Downloads: 7 Full text (2,64 MB) This document has many files! More... |
5. Online chemical characterization and sources of submicron aerosol in the major mediterranean port city of Piraeus, GreeceIasonas Stavroulas, Georgios Grivas, Eleni Liakakou, Panayiotis Kalkavouras, Aikaterini Bougiatioti, Dimitris G. Kaskaoutis, Maria Lianou, Kyriaki Papoutsidaki, M. Tsagkaraki, Evangelos Gerasopoulos, Pavlos Zarmpas, Nikolaos Mihalopoulos, 2021, original scientific article Abstract: Port cities are affected by a wide array of emissions, including those from the shipping, road transport, and residential sectors; therefore, the characterization and apportionment of such sources in a high temporal resolution is crucial. This study presents measurements of fine aerosol chemical composition in Piraeus, one of the largest European ports, during two monthly periods (winter vs. summer) in 2018–2019, using online instrumentation (Aerosol Chemical Speciation Monitor—ACSM, 7-λ aethalometer). PMF source apportionment was performed on the ACSM mass spectra to quantify organic aerosol (OA) components, while equivalent black carbon (BC) was decomposed to its fossil fuel combustion and biomass burning (BB) fractions. The combined traffic, shipping and, especially, residential emissions led to considerably elevated submicron aerosol levels (22.8 μg m−3) in winter, which frequently became episodic late at night under stagnant conditions. Carbonaceous compounds comprised the major portion of this submicron aerosol in winter, with mean OA and BC contributions of 61% (13.9 μg m−3) and 16% (3.7 μg m−3), respectively. The contribution of BB to BC concentrations was considerable and spatially uniform. OA related to BB emissions (fresh and processed) and hydrocarbon-like OA (from vehicular traffic and port-related fossil fuel emissions including shipping) accounted for 37% and 30% of OA, respectively. In summer, the average PM1 concentration was significantly lower (14.8 μg m−3) and less variable, especially for the components associated with secondary aerosols (such as OA and sulfate). The effect of the port sector was evident in summer and maintained BC concentrations at high levels (2.8 μg m−3), despite the absence of BB and improved atmospheric dispersion. Oxygenated components yielded over 70% of OA in summer, with the more oxidized secondary component of regional origin being dominant (41%) despite the intensity of local sources, in the Piraeus environment. In general, with respect to local sources that can be the target of mitigation policies, this work highlights the importance of port-related activities but also reveals the extensive wintertime impact of residential wood burning. While a separation of the BB source is feasible, more research is needed on how to disentangle the short-term effects of different fossil-fuel combustion sources. Keywords: Athens, harbor, shipping emissions, PM1, chemical speciation, organic aerosol, black carbon, ACSM, aethalometer, PMF Published in RUNG: 10.05.2024; Views: 987; Downloads: 4 Link to file This document has many files! More... |
6. Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern EuropeDimitris G. Kaskaoutis, Georgios Grivas, K. Oikonomou, P. Tavernaraki, Kyriaki Papoutsidaki, M. Tsagkaraki, Iasonas Stavroulas, Pavlos Zarmpas, D. Paraskevopoulou, Aikaterini Bougiatioti, 2022, original scientific article Abstract: This study examines the concentrations and characteristics of carbonaceous aerosols (including saccharides) and inorganic species measured by PM2.5 filter sampling and a multi-wavelength Aethalometer during two campaigns in a mountainous, medium-sized, Greek city (Ioannina). The first campaign was conducted in summer and used as a baseline of low concentrations, while the second took place in winter under intensive residential wood burning (RWB) emissions. Very high winter-mean OC concentrations (26.0 μg m−3) were observed, associated with an OC/EC ratio of 9.9, and mean BCwb and PM2.5 levels of 4.5 μg m−3 and 57.5 μg m−3, respectively. Simultaneously, record-high levoglucosan (Lev) concentrations (mean: 6.0 μg m−3; max: 15.9 μg m−3) were measured, revealing a severely biomass burning (BB)-laden environment. The water-soluble OC component (WSOC) accounted for 56 ± 9% of OC in winter, exhibiting high correlations (R2 = 0.93–0.97) with BB tracers (nss-K+, BCwb, Lev), nitrate and light absorption, potentially indicating the formation of water-soluble brown carbon (BrC) from fast oxidation processes. The examination of diagnostic ratios involving BB tracers indicated the prevalence of hardwood burning, while the mean Lev/OC ratio (22%) was remarkably higher than literature values. Applying a mono-tracer method based on levoglucosan, we estimated very high BB contributions to OC (∼92%), EC (∼64%) and WSOC (∼87%) during winter. On the contrary, low levels were registered during summer for all carbonaceous components, with winter/summer ratios of 4–5 for PM2.5 and BC, 10 for OC, 30 for BCwb and ∼1100 for levoglucosan. The absence of local BB sources in summer, combined with the photochemical processing and aging of regional organic aerosols, resulted in higher WSOC/OC fractions (64 ± 13%). The results indicate highly soluble fine carbonaceous aerosol fraction year-round, which when considered alongside the extreme concentration levels in winter can have important implications for short- and long-term health effects. Keywords: carbonaceous aerosols, biomass burning, levoglucosan, WSOC, heterogeneous chemistry, Greece Published in RUNG: 10.05.2024; Views: 924; Downloads: 4 Link to file This document has many files! More... |
7. Impact of peri-urban forest fires on air quality and aerosol optical and chemical properties : the case of the August 2021 wildfires in Athens, GreeceDimitris G. Kaskaoutis, Kalliopi Petrinoli, Georgios Grivas, Panayiotis Kalkavouras, M. Tsagkaraki, Kyriaki Papoutsidaki, Iasonas Stavroulas, D. Paraskevopoulou, Aikaterini Bougiatioti, 2024, original scientific article Keywords: biomass burning, carbonaceous aerosols, scattering, absorption, chemical composition, Mediterranean Published in RUNG: 10.05.2024; Views: 1031; Downloads: 0 This document has many files! More... |