1. Arabidopsis halleri shows hyperbioindicator behaviour for Pb and leaf Pb accumulation spatially separated from ZnStephan Höreth, Paula Pongrac, Marta Debeljak, Katarina Vogel-Mikuš, Matic Pečovnik, Primož Vavpetič, Iztok Arčon, original scientific article Abstract: Lead (Pb) ranks among the most problematic environmental pollutants. Background contamination of soils is nearly ubiquitous, yet plant Pb accumulation is barely understood. In a survey covering 165 European populations of the metallophyte Arabidopsis halleri, several field samples had indicated Pb hyperaccumulation, offering a chance to dissect plant Pb accumulation.
Accumulation of Pb was analysed in A. halleri individuals from contrasting habitats under controlled conditions to rule out aerial deposition as a source of apparent Pb accumulation. Several elemental imaging techniques were employed to study the spatial distribution and ligand environment of Pb.
Regardless of genetic background, A. halleri individuals showed higher shoot Pb accumulation than A. thaliana. However, dose–response curves revealed indicator rather than hyperaccumulator behaviour. Xylem sap data and elemental imaging unequivocally demonstrated the in planta mobility of Pb. Highest Pb concentrations were found in epidermal and vascular tissues. Distribution of Pb was distinct from that of the hyperaccumulated metal zinc. Most Pb was bound by oxygen ligands in bidentate coordination.
A. halleri accumulates Pb whenever soil conditions render Pb phytoavailable. Considerable Pb accumulation under such circumstances, even in leaves of A. thaliana, strongly suggests that Pb can enter food webs and may pose a food safety risk. Keywords: Pb accumulation, XANES, EXAFS, Arabidopsis halleri Published in RUNG: 16.01.2020; Views: 3925; Downloads: 0 This document has many files! More... |
2. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes-caprae mushroomsAnja Kavčič, Klemen Mikuš, Marta Debeljak, Johannes Teun van Elteren, Iztok Arčon, Alojz Kodre, Peter Kump, Andreas-Germanos Karydas, Alessandro Migliori, Mateusz Czyzycki, Katarina Vogel-Mikuš, 2019, original scientific article Abstract: This study provides information on mercury (Hg) localization, speciation and ligand environment in edible mushrooms: Boletus edulis, B. aereus and Scutiger pes-caprae collected at non-polluted and Hg polluted sites, by LA-ICP-MS, SR-μ-XRF and Hg L3-edge XANES and EXAFS. Mushrooms (especially young ones) collected at Hg polluted sites can contain more than 100 μg Hg g−1 of dry mass. Imaging of the element distribution shows that Hg accumulates mainly in the spore-forming part (hymenium) of the cap. Removal of hymenium before consumption can eliminate more than 50% of accumulated Hg.
Mercury is mainly coordinated to di-thiols (43–82%), followed by di-selenols (13–35%) and tetra-thiols (12–20%). Mercury bioavailability, as determined by feeding the mushrooms to Spanish slugs (known metal bioindicators owing to accumulation of metals in their digestive gland), ranged from 4% (S. pes-caprae) to 30% (B. aereus), and decreased with increasing selenium (Se) levels in the mushrooms. Elevated Hg levels in mushrooms fed to the slugs induced toxic effects, but these effects were counteracted with increasing Se concentrations in the mushrooms, pointing to a protective role of Se against Hg toxicity through HgSe complexation. Nevertheless, consumption of the studied mushroom species from Hg polluted sites should be avoided. Keywords: edible mushrooms, HgSe complex, imaging of elemental distribution, LA-ICP-MS, alpha-XRF, XAS Published in RUNG: 24.10.2019; Views: 5426; Downloads: 0 This document has many files! More... |
3. Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structureAlojz Kodre, Iztok Arčon, Marta Debeljak, Mateja Potisek, Matevž Likar, Katarina Vogel-Mikuš, 2017, original scientific article Abstract: Mercury (Hg) – plant – fungal interactions are only poorly studied. Hg speciation and ligand environment
in maize roots inoculated with arbuscular mycorrhizal (AM) fungi were investigated in order to better
understand the role of AM in Hg soil to root transfer.
The maize plants were grown in Hg polluted substrate (50 mg g1 as dissolved HgCl2) and inoculated
with AM fungi originating from: a) highly Hg polluted environment of a former Hg smelting site in Idrija,
Slovenia, (Glomus sp. – sample AmI), and b) non-polluted environment (commercial AM inoculum
Symbivit1 – sample AmC). Hg speciation and ligand environment in maize roots was studied by Hg-L3
XANES and EXAFS with emphasis on XAS methodology – modelling and fitting the XAFS spectra to extract in a reliable way as much information on Hg coordination as possible. The AmI plants developed more arbuscules and less vesicles than the AmC plants, and also
accumulated more Hg in the roots. A clear difference in Hg coordination between the AM (AmC & AmI)
and the control (ConC & ConI) plants is recognized in Hg L3-edge EXAFS analysis: in the ConC & ConI
maize roots 73–80% of Hg is attached between two sulphur atoms at the distance of 2.34 Å. The remaining
ligand is nitrogen at 2.04 Å. In AmI & AmC roots another Hg-S attachment encompassing four thiol groups
at the S-distance of 2.50 Å are identified, accounting for 21–26%. AM fungi can modify Hg ligand environment in plant roots, thus playing an important role in biogeochemical cycling of Hg in terrestrial
ecosystems. Keywords: EXAFS
XANES
Arbuscular mycorrhiza
Phytoremediation
Toxicity
Hg coordination
Ligand environment Published in RUNG: 27.09.2016; Views: 7309; Downloads: 0 This document has many files! More... |