Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Anthropic settlementsʹ impact on the light-absorbing aerosol concentrations and heating rate in the arctic
Niccolò Losi, Piotr Markuszewski, Martin Rigler, Asta Gregorič, Griša Močnik, Violetta Drozdowska, Przemek Makuch, Tymon Zielinski, Paulina Pakszys, Małgorzata Kitowska, 2023, original scientific article

Abstract: Light-absorbing aerosols (LAA) impact the atmosphere by heating it. Their effect in the Arctic was investigated during two summer Arctic oceanographic campaigns (2018 and 2019) around the Svalbard Archipelago in order to unravel the differences between the Arctic background and the local anthropic settlements. Therefore, the LAA heating rate (HR) was experimentally determined. Both the chemical composition and high-resolution measurements highlighted substantial differences between the Arctic Ocean background (average eBC concentration of 11.7 ± 0.1 ng/m3) and the human settlements, among which the most impacting appeared to be Tromsø and Isfjorden (mean eBC of 99.4 ± 3.1 ng/m3). Consequently, the HR in Isfjorden (8.2 × 10−3 ± 0.3 × 10−3 K/day) was one order of magnitude higher than in the pristine background conditions (0.8 × 10−3 ± 0.9 × 10−5 K/day). Therefore, we conclude that the direct climate impact of local LAA sources on the Arctic atmosphere is not negligible and may rise in the future due to ice retreat and enhanced marine traffic.
Keywords: light-absorbing aerosols, black carbon, climate change, heating rate
Published in RUNG: 21.12.2023; Views: 836; Downloads: 5
.pdf Full text (3,57 MB)
This document has many files! More...

2.
Lens parameters for Gaia18cbf – a long gravitational microlensing event in the Galactic plane
K. Kruszyńska, Ł. Wyrzykowski, K. A. Rybicki, M. Maskoliūnas, E. Bachelet, N. Rattenbury, P. Mróz, P. Zieliński, K. Howil, Z. Kaczmarek, S. T. Hodgkin, N. Ihanec, I. Gezer, M. Gromadzki, P. Mikołajczyk, A. Stankevičiūtė, V. Čepas, E. Pakštienė, K. Šiškauskaitė, J. Zdanavičius, V. Bozza, M. Dominik, R. Figuera Jaimes, A. Fukui, M. Hundertmark, N. Narita, R. Street, Y. Tsapras, Mateusz Bronikowski, M. Jabłońska, A. Jabłonowska, O. Ziółkowska, 2022, original scientific article

Abstract: Context. The timescale of a microlensing event scales as a square root of a lens mass. Therefore, long-lasting events are important candidates for massive lenses, including black holes. Aims. Here, we present the analysis of the Gaia18cbf microlensing event reported by the Gaia Science Alerts system. It exhibited a long timescale and features that are common for the annual microlensing parallax effect. We deduce the parameters of the lens based on the derived best fitting model. Methods. We used photometric data collected by the Gaia satellite as well as the follow-up data gathered by the ground-based observatories. We investigated the range of microlensing models and used them to derive the most probable mass and distance to the lens using a Galactic model as a prior. Using a known mass-brightness relation, we determined how likely it is that the lens is a main-sequence (MS) star. Results. This event is one of the longest ever detected, with the Einstein timescale of tE = 491.41−84.94+128.31 days for the best solution and tE = 453.74−105.74+178.69 days for the second best. Assuming Galaxy priors, this translates to the most probable lens masses of ML = 2.65−1.48+5.09 M⊙ and ML = 1.71−1.06+3.78 M⊙, respectively. The limits on the blended light suggest that this event was most likely not caused by a MS star, but rather by a dark remnant of stellar evolution.
Keywords: gravitational lensing: micro, Galaxy: stellar content, stars: black holes, stars: neutron, Astrophysics - Solar and Stellar Astrophysics
Published in RUNG: 13.11.2023; Views: 885; Downloads: 4
.pdf Full text (9,87 MB)
This document has many files! More...

3.
Search done in 0.02 sec.
Back to top