1. The challenge with high permittivity acceptors in organic solar cells : a case study with Y-series derivativesPeter Fürk, Suman Mallick, Thomas Rath, Matiss Reinfelds, Mingjian Wu, Erdmann Spiecker, Nikola Simic, Georg Haberfehlner, Gerald Kothleitner, Barbara Ressel, 2023, original scientific article Abstract: Y-series acceptors have brought a paradigm shift in terms of power conversion efficiencies of organic solar cells in the last few years. Despite their high performance, these acceptors still exhibit substantial energy loss, stemming from their low-permittivity nature. To tackle the energy loss situation, we prepared modified Y-series acceptors with improved permittivities via an alternative synthetic route. Keywords: solar cells, Y-series acceptors, morphology, efficiency measurements Published in RUNG: 29.06.2023; Views: 2098; Downloads: 14 Full text (3,82 MB) This document has many files! More... |
2. A pyrrolopyridazinedione-based copolymer for fullerene-free organic solar cellsAstrid-Caroline Knall, Samuel Rabensteiner, Sebastian F. Hoefler, Matiss Reinfelds, Mathias Hobisch, Heike M. A. Ehmann, Nadiia Pastukhova, Egon Pavlica, Gvido Bratina, Illie Hanzu, Shuguang Wen, Renqiang Yang, Gregor Trimmel, Thomas Rath, 2021, original scientific article Abstract: The recent success of non-fullerene acceptors in organic photovoltaics also entails a change in the requirements to the polymer donor in terms of optical and morphological properties leading to a demand for novel conjugated polymers. Herein, we report on the synthesis of a 1,4-bis-(thiophene-2-yl)-pyrrolopyridazinedione based copolymer with 2-ethylhexyl substituents on the pyrrolopyridazinedione moiety. A 2D conjugated benzodithiophene (BDT) was chosen as comonomer. The resulting copolymer T-EHPPD-T-EHBDT showed a molecular weight of 10.2 kDa, an optical band gap of 1.79 eV, a hole mobility of 1.8 × 10−4 cm2 V−1 s−1 and a preferred face-on orientation with regard to the substrate. The comparably wide band gap as well as the determined energy levels (HOMO: −5.47 eV, LUMO: −3.68 eV) match well with the narrow band gap non-fullerene acceptor ITIC-F, which was used as the acceptor phase in the bulk heterojunction absorber layers in the investigated solar cells. The solar cells, prepared in inverted architecture, revealed power conversion efficiencies up to 7.4% using a donor:acceptor ratio of 1 : 1 in the absorber layer. Keywords: non-fullerene solar cells, charge transport, charge mobility, power conversion efficiency Published in RUNG: 27.01.2021; Views: 3506; Downloads: 0 This document has many files! More... |
3. Elucidation of Donor:Acceptor Phase Separation in Nonfullerene Organic Solar Cells and Its Implications on Device Performance and Charge Carrier MobilitySebastian F. Hoefler, Georg Haberfehlner, Thomas Rath, Andreas Keilbach, Mathias Hobisch, Alexander Dixon, Egon Pavlica, Gvido Bratina, Gerald Kothleitner, Ferdinand Hofer, Gregor Trimmel, 2019, original scientific article Abstract: In bulk-heterojunction solar cells, the device performance strongly depends on the donor and acceptor properties, the phase separation in the absorber layer, and the formation of a bicontinuous network. While this phase separation is well explored for polymer:fullerene solar cells, only little is known for polymer:nonfullerene acceptor solar cells. The main hurdle in this regard is often the chemical similarity of the conjugated polymer donor and the organic nonfullerene acceptor (NFA), which makes the analysis of the phase separation via atomic force microscopic (AFM) phase images or conventional transmission electron microscopy difficult. In this work, we use the donor polymer PTB7-Th and the small molecule acceptor O-IDTBR as the model system and visualized the phase separation in PTB7-Th:O-IDTBR bulk-heterojunctions with different donor:acceptor ratios via scanning transmission electron microscopy (STEM) high-angle annular dark-field (HAADF) images and electron energy loss spectroscopy (EELS) based elemental mapping, which resulted in a good contrast between the donor and the acceptor despite very low differences in the chemical composition. AFM as well as grazing-incidence wide-angle X-ray scattering (GIWAXS) investigations support the electron microscopic data. Furthermore, we elucidate the implications of the phase separation on the device performance as well as charge carrier mobilities in the bulk-heterojunction layers, and a high performance of the solar cells was found over a relatively broad range of polymer domain sizes. This can be related to the larger domain sizes of the acceptor phase with higher amounts of O-IDTBR in the blend, while the polymer donor phase still forms continuous pathways to the electrode, which keeps the hole mobility at a relatively constant level. Keywords: nanomorphology bulk-heterojunction scanning transmission electron microscopy organic photovoltaics charge carrier mobility Published in RUNG: 15.01.2020; Views: 3761; Downloads: 89 Full text (6,22 MB) |