1.
UHECR mass composition from anisotropy of their arrival directions with the Telescope Array SDM. Kuznetsov,
Jon Paul Lundquist, 2022, published scientific conference contribution
Abstract: We propose a new method for the estimation of ultra-high energy cosmic ray (UHECR) mass composition from a distribution of their arrival directions. The method employs a test statistic (TS) based on a characteristic deflection of UHECR events with respect to the distribution of luminous matter in the local Universe modeled with a flux-weighed 2MRS catalog. Making realistic simulations of the mock UHECR sets, we show that this TS is robust to the presence of galactic and non-extreme extra-galactic magnetic fields and sensitive to the mass composition of events in a set.
We apply the method to Telescope Array surface detector data for 11 years and derive new independent constraints on fraction of protons and iron in p-Fe mix at E>10 EeV. At 10100 EeV --- pure iron or even more massive composition. This result is in tension with Auger composition model inferred from spectrum-Xmax fit at 2.7σ (2.0σ) for PT'11 (JF'12) regular GMF model.
Keywords: Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, composition, anisotropy, magnetic fields, 2MRS
Published in RUNG: 04.10.2023; Views: 2196; Downloads: 6
Full text (3,02 MB)
This document has many files! More...