Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 9 / 9
First pagePrevious page1Next pageLast page
1.
2.
Aerosol light extinction coefficient closure : comparison of airborne in-situ measurements with LIDAR measurements during JATAC/CAVA-AW 2021/2022 campaigns
Marija Bervida, Jesús Yus-Díez, Luka Drinovec, Uroš Jagodič, Blaž Žibert, Matevž Lenarčič, Griša Močnik, 2024, published scientific conference contribution abstract

Abstract: The JATAC campaign in September 2021 and September 2022 on and above Cape Verde Islands resulted in a large in-situ and remote measurement dataset. Its main objective was the calibration and validation of the ESA satellite Aeolus ALADIN Lidar. The campaign also featured secondary scientific objectives related to climate change. Constraining remote sensing measurements with those provided by in-situ instrumentation is crucial for proper characterization and accurate description of the 3-D structure of the atmosphere.We present the results performed with an instrumented light aircraft (Advantic WT-10) set-up for in-situ aerosol measurements. Twenty-seven flights were conducted over the Atlantic Ocean at altitudes around and above 3000 m above sea level during intense dust transport events. Simultaneous measurements with PollyXT, and eVe ground-based lidars took place, determining the vertical profiles of aerosol optical properties, which were also used to plan the flights.The aerosol light extinction coefficient was obtained at three different wavelengths as a combination of the absorption coefficients determined using Continuous Light Absorption Photometers (CLAP) and the scattering coefficients measured with an Ecotech Aurora 4000 nephelometer, which also measured the backscatter fraction. The particle size distributions above 0.3 µm diameter were measured with two Grimm 11-D Optical Particle Size Spectrometers (OPSS). Moreover, CO2 concentration, temperature, aircraft GPS position and altitude, air and ground speed were also measured.We compare the in-situ aircraft measurements of the aerosol extinction coefficients with the AEOLUS lidar derived extinction coefficients, as well as with the ground-based eVe and PollyXT lidar extinction coefficients when measurements overlapped in space and time. The comparison was performed at the closest available wavelengths, with in-situ measurements inter/extrapolated to those of the lidar systems.In general we find an underestimation of the extinction coefficient obtained by lidars compared to the in-situ extinction coefficient. The slopes of regression lines of ground-based lidars, PollyXT and eVe, against the in-situ measurements are characterised by values ranging from 0.61 to 0.7 and R2 between 0.71 and 0.89. Comparison further suggests better agreement between Aeolus ALADIN lidar and the in-situ measurements. Relationship described by fitting the Aeolus to in-situ data is characterised by the slope value 0.76 and R2 of 0.8.The causes of better agreement of the in-situ measurements with the ALADIN lidar than with the surface based ones are being studied, with several reasons being considered: a) lower spatial and temporal resolution which homogenize the area of study in comparison with the very fine vertical variations of the aerosols, which can be detected with the surface-based measurements, impairing the comparison with highly vertically resolved ground-lidar measurements while not affecting averaged space-borne lidar; b) the effect of lower clouds/ Saharan air layers on the attenuation of the lidar signal.The presented results show the importance of the comparison of the remote with in-situ measurements for the support of the research on evolution, dynamics, and predictability of tropical weather systems and provide input into and verification of the climate models.
Keywords: LIDAR, Aeolus, ALADIN, in-situ measurements, aerosol absorption, aerosol extinction, airborne measurements
Published in RUNG: 18.03.2024; Views: 489; Downloads: 6
.pdf Full text (291,41 KB)
This document has many files! More...

3.
Unmanned aerial vehicles for the Joint Aeolus Tropical Atlantic Campaign
Franco Marenco, Griša Močnik, 2023, published scientific conference contribution abstract

Abstract: During June 2022, the Cyprus Institute (CyI) took part in the ASKOS experiment in Mindelo, Cape Verde, with several of Unmanned Aerial Vehicles (UAVs), fitted with a number of in-situ aerosol instruments able to profile the Saharan Air Layer between the surface and an altitude of 5,300 m. In addition to ASKOS objectives, transnational access project Diurnal vAriation of the vertically resolved siZe distribution in the Saharan Air Layer  (DAZSAL) was also carried out at the same time. The campaign aimed at validating the Aeolus L2A product in the presence of dust and marine aerosols, estimating the influence on Aeolus products of non-spherical particles, evaluating the impact of particle orientation, and study the diurnal cycle of the dust size-distribution at high altitude. In this presentation we will present and discuss the scientific objectives, the context, the Unmanned Aerial Systems (UASs) that we developed in-house, and the instruments used, together with their limitations, calibration methods, uncertainties, challenges and difficulties encountered. We will also discuss the logistical and planning challenges that such a campaign entails.Operations took place from the Cesaria Evora International Airport. The instruments deployed on-board the UAVs permitted to evaluate the height-resolved particle size-distribution between 0.1 and 40 µm and detect cases of particle orientation, to complement the observations with ground-based remote sensing set out by NOA and TROPOS. Moreover, 24 high-altitude dust samples were collected on impactors, for further analysis by Scanning Electron Microscopy. In total, 25 scientific flights were performed on 12 flying days (almost half of which at night). Five flights were conducted during Aeolus overpasses. Weather has been a determining factor for both the ground-based remote sensing operations and the UAS operation, and airport traffic has been another constraint that needed to be accounted for, in the UAS operation.
Keywords: UAV, mineral dust, climate change, Aeolus satellite
Published in RUNG: 21.12.2023; Views: 802; Downloads: 3
.pdf Full text (291,05 KB)
This document has many files! More...

4.
Dust aerosols' mineralogy in the chemical transport model COSMO- MUSCAT during JATAC and comparison with lidar and in-situ data
Sofía Gómez Maqueo Anaya, Griša Močnik, 2023, published scientific conference contribution abstract

Abstract: Mineral dust aerosols are composed from a complex assemblage of various minerals depending on the region they come from. Considering that minerals have their distinct physicochemical properties, differences on mineral dust aerosols climatic impact will arise as a consequence of distinct mineral content.Chemical transport models typically assume that mineral dust aerosols have uniform composition, despite the known regional variations in the mineral components. This study adds mineralogical information to the mineral dust emission scheme used in the chemical transport model, COSMO-MUSCAT.Here we show some steps of the inclusion of mineralogy to the emission scheme. Results of the simulated mineral dust aerosols are shown with their respective mineralogy from sources in Africa for an example case from the JATAC campaign in September 2021. The results of the simulated mineral dust aerosol are compared with lidar and in-situ data measured at Mindelo, Cape Verde. Furthermore, the comparison with the lidar retrieved vertical profiles at Mindelo, highlights a possible link between the mineral dust aerosol optical properties and the distinct minerals found within them.
Keywords: mineral dust, Aeolus satellite, climate change
Published in RUNG: 21.12.2023; Views: 689; Downloads: 2
.pdf Full text (289,33 KB)

5.
The Joint Aeolus Tropical Atlantic Campaign 2021/2022 overview : atmospheric science and satellite validation in the tropics
Thorsten Fehr, Griša Močnik, 2023, published scientific conference contribution abstract

Abstract: ESA’s Aeolus satellite observations are expected to have the biggest impact for the improvement of numerical weather prediction in the Tropics. An important case relating to the predictability of tropical weather systems is the outflow of Saharan dust, its interaction with cloud microphysics and impact on the development of tropical storms over the Atlantic Ocean.The Joint Aeolus Tropical Atlantic Campaign (JATAC) deployed on Cabo Verde (2021/2022) and the US Virgin Islands (2021) supported the validation and preparation of the ESA missions Aeolus, EarthCARE and WIVERN, and addressed science objectives regarding the Saharan Aerosol layer, African Easterly Waves and Jet, Tropical Easterly Jet, and the Intertropical Convergence Zone, as well as their relation to the formation of convective systems, and the long-range transport of dust and its impact on air quality.JATAC started in July 2021 with the deployment of ground-based instruments in the frame of the ASKOS project at the Ocean Science Center Mindelo, including the eVe and PollyXT lidars, and a W-band Doppler cloud radar. By mid-August, the CPEX-AW campaign started operations from the US Virgin Islands with NASA’s DC-8 flying laboratory in the Western Tropical Atlantic and Caribbean carrying the Doppler Aerosol Wind Lidar (DAWN), Airborne Precipitation and Cloud Radar (APR-3), Water Vapor DIAL and HSRL (HALO), microwave sounder (HAMSR) and dropsondes. In September the DLR Falcon-20 aircraft, carrying the ALADIN Airborne Demonstrator (A2D) and the 2-µm Doppler wind lidar, and the Safire Falcon-20, carrying the high-spectral-resolution Doppler lidar (LNG), the RASTA Doppler cloud radar, in-situ cloud and aerosol instruments, and dropsondes, were deployed to Sal in the frame of the AVATAR-T and CADDIWA projects. The Aerovizija Advantic WT-10 light aircraft with optical particle spectrometers, filter-photometers and nephelometers for in-situ aerosol characterisation was operating in close coordination with the ground-based observations in the CAVA-AW project.The activities continued in June 2022 when the ASKOS ground based observations were enhanced with UAV airborne in-situ aerosol measurements deployed by the Cyprus Institute, solar radiation measurements supported by PMOD/WRC, dust particle orientation measurements (WALL-E lidar), and radiosonde releases equipped with electric field-mills. NASA deployed the DC-8 aircraft all September to Sal with the 2021 payload in the framework of the CPEX-CV activity, including regular radiosonde launches. As in 2021, the Aerovizija aircraft took part with in-situ aerosol measurements during two weeks in September. JATAC was supported by dedicated numerical weather and dust simulations supporting forecasting efforts and addressing open science questions.Around 60 scientific flights of four aircraft, with an additional 25 UAV flights, were performed during JATAC. 23 Aeolus orbits were underflown, many of them with simultaneous observations of multiple aircraft collocated with ground-based observations. In addition, the science objectives were fully covered through the large number of flights, ground based cloud and aerosol observations, regular radiosondes and dropsondes.Overall, JATAC activities have resulted in a high-quality and comprehensive dataset supporting a wide range of tropical atmospheric research, the validation of Aeolus and other satellites, and have provided key reference data for the development future Earth Observation missions.
Keywords: Aeolus satellite, airborne measurements, mineral dust, cal/val, calibration, validation
Published in RUNG: 21.12.2023; Views: 824; Downloads: 4
.pdf Full text (293,23 KB)
This document has many files! More...

6.
Airborne in-situ measurements during JATAC/CAVA-AW 2021/2022 campaigns : first climate-relevant results
Jesús Yus-Díez, Marija Bervida, Luka Drinovec, Blaž Žibert, Matevž Lenarčič, Griša Močnik, 2023, published scientific conference contribution abstract

Abstract: The JATAC campaign in September 2021 and September 2022 on and above Cape Verde Islands have resulted in a large dataset of in-situ and remote measurements. In addition to the calibration/validation of the ESA’s Aeolus ALADIN during the campaign, the campaign also featured secondary scientific objectives related to climate change. The atmosphere above the Atlantic Ocean off the coast of West Africa is ideal for the study of the Saharan Aerosol layer (SAL), the long-range transport of dust, and the regional influence of SAL aerosols on the climate. We have instrumented a light aircraft (Advantic WT-10) with instrumentation for the in-situ aerosol characterization. Ten flights were conducted over the Atlantic Ocean up to over 3000 m above sea level during two intense dust transport events. PollyXT, and EvE lidars were deployed at the Ocean Science Center, measuring the vertical optical properties of aerosols and were also used to plan the flights. The particle light absorption coefficient was determined at three different wavelengths with Continuous Light Absorption Photometers (CLAP). They were calibrated with the dual wavelength photo-thermal interferometric measurement of the aerosol light-absorption coefficient in the laboratory. The particle size distributions above 0.3 µm diameter were measured with two Grimm 11-D Optical Particle Size Spectrometers (OPSS). These measurements were conducted separately for the fine aerosol fraction and the enriched coarse fraction using an isokinetic inlet and a pseudo-virtual impactor, respectively. The aerosol light scattering and backscattering coefficients were measured with an Ecotech Aurora 4000 nephelometer. The instrument used a separate isokinetic inlet and was calibrated prior to and its calibration validated after the campaign with CO2. We have measured the total and diffuse solar irradiance with a DeltaT SPN1 pyranometer. CO2 concentration, temperature, aircraft GPS position altitude, air and ground speed were also measured. The in-situ single-scattering albedo Angstrom exponent and the lidar depolarization ratio will be compared as two independent parameters indicating the presence of Saharan dust. We will show differences between homogeneous Saharan dust layer in space (horizontally and vertically) and time and events featuring strong horizontal gradients in aerosol composition and concentration, and layering in the vertical direction. These layers often less than 100 m thick, separated by layers of air with no dust. Complex mixtures of aerosols in the outflow of Saharan dust over the Atlantic Ocean in the tropics will be characterized. We will show the in-situ atmospheric heating/cooling rate and provide insight into the regional and local effects of this heating of the dust layers. These measurements will support of the research on evolution, dynamics, and predictability of tropical weather systems and provide input into and verification of the climate models.
Keywords: mineral dust, climate change, heating rate, black carbon, Aeolus satellite, airborne measurements
Published in RUNG: 21.12.2023; Views: 800; Downloads: 4
.pdf Full text (292,05 KB)
This document has many files! More...

7.
Profiling Saharan airborne dust with UAV-based in-situ instrumentation during the ASKOS experiment in Cape Verde
Maria Kezoudi, Griša Močnik, 2023, published scientific conference contribution abstract

Abstract: The ASKOS experimental campaign of European Space Agency (ESA) was organised by the National Observatory of Athens, and aimed at the calibration and validation of the Aeolus satellite aerosol/cloud product. Airborne observations were performed by the Climate and Atmosphere Research Centre (CARE-C) team of the Cyprus Institute at the Cesaria Evora International Airport of the island of São Vicente in Cape Verde between 10 and 30 June 2022. These in-situ aerosol measurements were conducted using the advanced Unmanned Aerial Vehicles (UAVs) of the Unmanned System Research Laboratory (USRL), equipped with specialised aerosol in-situ sensors, capturing the Saharan Air Layer (SAL) from ground up to 5.3 km Above Sea Level (ASL). The new custom-designed Composite Bird (CoBi) USRL and Skywalker UAVs (Kezoudi et al., 2021), were equipped with Optical Particle Counters (OPCs), samplers and backscatter sondes.25 UAV vertical flights were performed in total, with 11 of them during night. The altitude of the Marine Boundary Layer (MBL) was mainly observed from ground up to about 1.0 km ASL, whereas during most of the flights, high concentrations of dust particles were found between 1.5 and 5.0 km ASL. Results obtained from OPCs show the presence of particles sizing up to 20 um within MBL and up to 40 um within SAL. Further information on morphology and mineralogy of observed particles will be given by the offline analysis of collected samples under Scanning Electron Microscope (SEM). COBALD observations alongside ground-based lidar measurements agree on the presence of non-spherical particles within dust layers.  Ongoing exploitation of airborne observations along with coincident and collocated ground-based measurements will provide a complete picture for comparison with Aeolus data, particularly in relation to aerosols, where we have the most to learn.
Keywords: mineral dust, UAV, airborne measurements, climate change, Aeolus satellite
Published in RUNG: 21.12.2023; Views: 862; Downloads: 4
.pdf Full text (290,96 KB)
This document has many files! More...

8.
JATAC/CAVA-AW Aeolus Cal/Val airborne campaign dataset
Jesús Yus-Díez, Griša Močnik, Luka Drinovec, Marija Bervida, Blaž Žibert, Uroš Jagodič, Matevž Lenarčič, complete scientific database of research data

Abstract: Light aircraft (WT10 - experimental) with position and windspeed variables provided by onboard GPS, as well as additional meteorological sensors. The aircraft was mounted with a: a sunshine pyranometer type SPN1 (Delta-T Devices Ltd), a polar integrating nephelometer AURORA 4000 (Ecotech Pty Ltd), and had a dual sampling line aircraft for measurements at the fine and coarse fraction of the absorption by two Continuous Light Absorption Photometer (CLAPS, by Haze Instruments d.o.o.) and the particle size distribution by two optical particle counters (OPC, model 11D, GRIMM Technologies). The pyranometer provides measurements of the global, direct and diffuse irradiance for a radiation spectrum range between 400 and 2700nm with a 1s time resolution. The polar integrating nephelometer measures the scattering coefficients of particles at three wavelengths (450, 525 and 635 nm) and multiple angles (two selected for the campaign: 0, 90deg) with a 5s time resolution. The CLAP photometers measure the absorption coefficient by aerosol particles at three wavelengths (467, 529 and 653 nm) with a 1s time resolution. The OPC measurements provide the number and mass concentration of aerosol particles for 31 bins in the size range between 0.253 and 35.15 micrometers with a 6s time resolution. The 2021 and 2022 campaigns are found at: http://www.worldgreenflight.com/glwf.php#to-2021 http://www.worldgreenflight.com/glwf.php#to-2022-jatac
Keywords: Aeolus satellite, Saharan dust, aerosol, calibration, validation
Published in RUNG: 27.09.2023; Views: 988; Downloads: 9
.pdf Full text (77,35 KB)
This document has many files! More...

9.
Aeolus calibration, validation and science campaigns
Thorsten Fehr, Vassilis Amiridis, Sebastian Bley, Philippe Cocquerez, Christian Lemmerz, Griša Močnik, Gail Skofronick-Jackson, Anne Grete Straume, 2020, published scientific conference contribution abstract

Abstract: Since 2007, a series of ESA supported airborne campaigns have been essential to the development of the Aeolus Doppler Wind Lidar satellite mission, which was successfully launched on 22 September 2018 and is providing a novel wind and aerosol profile data. A core element of the Aeolus Cal/Val activities is DLR’s A2D wind lidar on-board the DLR Falcon aircraft, an airborne demonstrator for the Aeolus ALADIN satellite instrument flown in combination with the 2-µm Doppler Wind Lidar reference system. Following the pre-launch WindVal-I and –II campaigns in 2015 and 2016, a number of calibration and validation campaigns have been successfully implemented: WindVal-III providing early Cal/Val results in November 2018 only three months after the Aeolus launch, AVATAR-E in May 2019 focussing on the Cal/Val over Central Europe, and AVATAR-I in September 2019 providing Cal/Val information in the North Atlantic and Arctic flying from Iceland. The airborne validation is also being supported through balloon flights in the tropical UTLS and lower stratosphere in the frame of the CNES Stratéole-2 stratospheric balloon activities. In the frame of the ESA supported pre-Stratéole-2 campaign, eight stratospheric balloons have been launched from the Seychelles in November/December 2019 providing unique upper level wind data for the Aeolus validation. The largest impact of the Aeolus observations is expected in the Tropics, and in particular over the Tropical oceans, where only a limited number of wind profile information is provided by ground based observations. Aeolus provides key direct measurements which are of importance to correctly constrain the wind fields in models. In addition, Aeolus observations have the potential to further enhance our current knowledge on aerosols and clouds by globally providing optical properties products that include atmospheric backscatter and extinction coefficient profiles, lidar ratio profiles and scene classification. In the tropics, a particularly interesting case is the outflow of Saharan dust and its impact on micro-physics in tropical cloud systems. The region off the coast of West Africa allows the study of the Saharan Aerosol layer, African Easterly Waves and Jets, Tropical Easterly Jet, as well as the deep convection in ITCZ. Together with international partners, ESA is currently implementing a Tropical campaign in July 2020 with its base in Cape Verde that comprises both airborne and ground-based activities addressing the tropical winds and aerosol validation, as well as science objectives. The airborne component includes the DLR Falcon-20 carrying the A2D and 2-µm Doppler Wind lidars, the NASA P-3 Orion with the DAWN and HALO lidar systems, the APR Ku-, Ka- and W-band Doppler radar and drop sondes, and a Slovenian small aircraft providing in-situ information from aethalometers, nephelometers and optical particle counters. The ground-based component led by the National Observatory of Athens is a collaboration of European teams providing aerosol and cloud measurements with a range of lidar, radar and radiometer systems, as well as a drone providing in-situ aerosol observations. In addition, the participation airborne capabilities by NOAA and LATMOS/Meteo France are currently being investigated. This paper will provide a summary of the Aeolus campaign focussing on the planned tropical campaign.
Keywords: Aeolus satellite, ALADIN, aerosol, validation
Published in RUNG: 23.08.2022; Views: 1511; Downloads: 58
URL Link to full text
This document has many files! More...

Search done in 0.05 sec.
Back to top