11. Production and Quality Control of the Scintillator Surface Detector for the AugerPrime Upgrade of the Pierre Auger ObservatoryJan Pękala, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, AugerPrime Observatory Upgrade, Scintillator Surface Detectors (SSDs), SSD Production and Quality Control Published in RUNG: 24.07.2020; Views: 3866; Downloads: 75
Full text (3,86 MB) |
12. New Electronics for the Surface Detectors of the Pierre Auger ObservatoryD. Nitz, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, AugerPrime detector upgrade, Auger Surface Detectors, electronics Published in RUNG: 24.07.2020; Views: 3711; Downloads: 80
Full text (7,57 MB) |
13. The Pierre Auger Observatory Upgrade - Preliminary Design ReportA. Aab, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, project documentation (preliminary design, working design) Keywords: Pierre Auger Observatory, the Pierre Auger Observatory "AugerPrime" Upgrade, Preliminary Design Report Published in RUNG: 15.06.2017; Views: 6176; Downloads: 0 This document has many files! More... |
14. |
15. Upgrade of the Pierre Auger Observatory (AugerPrime)Ralph Engel, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The data collected with the Pierre Auger Observatory have led
to a number of surprising discoveries. While a strong
suppression of the particle flux at the highest energies has
been established unambiguously, the dominant physics processes
related to this suppression could not be identified.
Within the energy range covered by fluorescence detector
observations with sufficient statistics, an unexpected change
of the depth of maximum distribution is found. Using LHC-tuned
interaction models these observations can be understood as a
correlated change of the fluxes of different mass groups.
On the other hand, they could also indicate a change of
hadronic interactions above the energy of the ankle.
Complementing the water Cherenkov detectors of the surface
array with scintillator detectors will, mainly through the
determination of the muonic shower component, extend the
composition sensitivity of the Auger Observatory into the flux
suppression region. The upgrade of the Auger Observatory will
allow us to estimate the primary mass of the highest energy
cosmic rays on a shower-by-shower basis. In addition to
measuring the mass composition the upgrade will open the
possibility to search for light primaries at the highest
energies, to perform composition-selected anisotropy studies,
and to search for new phenomena including unexpected changes
of hadronic interactions. After introducing the physics
motivation for upgrading the Auger Observatory the planned
detector upgrade is presented. In the second part
of the contribution the expected performance and improved
physics sensitivity of the upgraded Auger Observatory are
discussed. Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, elemental composition sensitivity, Auger upgrade (AugerPrime), muonic shower component, scintillator detectors Published in RUNG: 03.03.2016; Views: 5679; Downloads: 226
Full text (659,02 KB) |