1. Mass composition of ultrahigh energy cosmic rays from distribution of their arrival directions with the Telescope ArrayR. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, Jon Paul Lundquist, 2024, original scientific article Abstract: We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array (TA) experiment with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale structure (LSS) of the Universe. As we report in the companion Letter, the TA data show large deflections with respect to the LSS which can be explained, assuming small extragalactic magnetic fields (EGMF), by an intermediate composition changing to a heavy one (iron) in the highest energy bin. Here we show that these results are robust to uncertainties in UHECR injection spectra, the energy scale of the experiment and galactic magnetic fields. The assumption of weak EGMF, however, strongly affects this interpretation at all but the highest energies E > 100 EeV, where the remarkable isotropy of the data implies a heavy injected composition even in the case of strong EGMF. This result also holds if UHECR sources are as rare as 2 × 10[sup]−5 Mpc[sup]−3, that is the conservative lower limit for the source number density. Keywords: ultrahigh energy cosmic rays, large-scale structure, extragalactic magnetic fields, UHECR propagation, Telescope Array, UHECR mass composition, UHECR arrival directions Published in RUNG: 23.04.2025; Views: 132; Downloads: 0
Link to file This document has many files! More... |
2. Isotropy of Cosmic Rays beyond 10[sup]20 eV Favors Their Heavy Mass CompositionR. U. Abbasi, Jon Paul Lundquist, 2024, original scientific article Abstract: We report an estimation of the injected mass composition of ultrahigh energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extragalactic magnetic fields (EGMFs), the results are consistent with a relatively heavy injected composition at E ∼ 10 EeV that becomes lighter up to E ∼ 100 EeV, while the composition at E > 100 EeV is very heavy. The latter is true even in the presence of highest experimentally allowed extragalactic magnetic fields, while the composition at lower energies can be light if a strong EGMF is present. The effect of the uncertainty in the galactic magnetic field on these results is subdominant. Keywords: ultrahigh energy cosmic rays (UHECRs), Large Scale Structure, extragalactic magnetic fields, UHECR propagation, Telescope Array surface detector, UHECR mass composition, UHECR arrival directions Published in RUNG: 23.04.2025; Views: 134; Downloads: 0
Link to file This document has many files! More... |
3. Astrophysical models to interpret the Pierre Auger Observatory dataJuan Manuel González, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: The Pierre Auger Observatory has measured the spectrum of ultra-high-energy cosmic rays with unprecedented precision, as well as the distribution of the depths of the maximum of the shower development in the atmosphere, which provide a reliable estimator of the mass composition. The measurements above 10[sup]17.8 eV can be interpreted assuming two populations of uniformly distributed sources, one with a soft spectrum dominating the flux below few EeV, and another one with a very hard spectrum dominating above that energy. When considering the presence of intense extragalactic magnetic fields between our Galaxy and the closest sources and a high-energy population with low spatial density, a magnetic horizon appears, suppressing the cosmic ray's flux at low-energies, which could explain the very hard spectrum observed at Earth. The distribution of arrival directions, which at energies above 32 EeV shows indications of a correlation with a population of starburst galaxies or the radio galaxy Centaurus A (Cen A), are also important to constrain the sources. It is shown that adding a fractional contribution from these sources of about 20% on top of an homogeneous background leads to an improvement of the model likelihood. Keywords: ultra-high-energy cosmic rays, UHECR energy spectrum, UHECR mass composition, UHECR anisotropies, UHECR propagation, UHECR data interpretation, extragalactic magnetic fields, starburst galaxies, Centaurus A, Pierre Auger Observatory Published in RUNG: 24.03.2025; Views: 329; Downloads: 7
Full text (790,55 KB) This document has many files! More... |
4. Colloidal metal nanoparticles as a source for the growth of thin filmsSaim Emin, 2022, published scientific conference contribution abstract (invited lecture) Abstract: Synthesis of colloidal nanoparticles (NPs) which offer good colloidal stability is quite important for different applications like spin-coating, dip-coating etc. Having metallic nanoparticles in the form of stable suspension allow the generation of thin films with desired thicknesses. We will present the production of different classes of materials starting from colloidal metal NPs. An example will be given on the preparation of Fe2O3 and WO3 thin films which are used in photoelectrochemical oxidation of water (e.g. water splitting). Another transformation which involves metallic NPs include the preparation of MoSe2 and WSe2 thin films which is achieved in a tube furnace at elevated temperatures. Very recently, the use of metallic NPs were also extended for the preparation of transition metal carbides. We managed to produce W2C and WC phases starting from metallic W NPs. The details of this phase conversion will be discussed. The presentation will provide details on how transition metallic NPs can be used to prepare metal oxide, metal selenide and metal carbides. Keywords: colloidal metal nanoparticles, thin films, water splitting Published in RUNG: 16.01.2025; Views: 903; Downloads: 0 This document has many files! More... |
5. Biotechnological recycling and recovery of metals from secondary raw materials through biogenic synthesis of nanoparticlesSvetlin Toshev, Alexandre Loukanov, Saim Emin, Seilichiro Nakabayashi, 2021, original scientific article Abstract: The waste electrical and electronic equipment (WEEE) is an important secondary source for renewable extraction of valuable metals and raw materials.
The mineral biotechnologies are promising alternative to the current industrial chemical technologies for waste treatment, which are often accompanied with negative environmental impact. Here we report a systematic biotechnological strategy for recycling, recovering and extraction of metals from WEEE as biogenic formed nanoparticles. The process is based on two general steps – bioleaching (through autotrophic/heterotrophic bacteria), and extraction from the effluent as biosynthesised nanoscale materials. The obtained analytical data revealed that copper was bioleached in the form of nanoparticles, the efficiency being more than 90 %, which was the highest achieved value in comparison with the other metals. The recovered content of gold was less than 50 %, but the efforts for improvement of microbial leaching efficiency of Au are still in progress. The reported eco–friendly biotechnological approach enables proper implementation of new resource recovery–oriented recycling strategies with reduced risk of negative impact on nature. Keywords: biotechnological recycling, secondary raw materials, nanoparticles Published in RUNG: 10.01.2025; Views: 541; Downloads: 4
Full text (448,56 KB) This document has many files! More... |
6. Combined fit of spectrum and composition for FR0 radio-galaxy-emitted ultra–high energy cosmic rays with resulting secondary photons and neutrinosJon Paul Lundquist, Serguei Vorobiov, Lukas Merten, Anita Reimer, Margot Boughelilba, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2025, original scientific article Abstract: This study comprehensively investigates the gamma-ray dim population of Fanaroff–Riley
Type 0 (FR0) radio galaxies as potentially significant sources of ultra–high energy cosmic rays
(UHECRs, E > 10[sup]18 eV) detected on Earth. While individual FR0 luminosities are relatively
low compared to the more powerful Fanaroff–Riley Type 1 and Type 2 galaxies, FR0s are
substantially more prevalent in the local universe, outnumbering the more energetic galaxies
by a factor of ∼5 within a redshift of z ≤ 0.05. Employing CRPropa3 simulations, we estimate
the mass composition and energy spectra of UHECRs originating from FR0 galaxies for energies
above 10[sup]18.6 eV. This estimation fits data from the Pierre Auger Observatory (Auger)
using three extensive air shower models; both constant and energy-dependent observed
elemental fractions are considered. The simulation integrates an approximately isotropic
distribution of FR0 galaxies, extrapolated from observed characteristics, with UHECR
propagation in the intergalactic medium, incorporating various plausible configurations of
extragalactic magnetic fields, both random and structured. We then compare the resulting
emission spectral indices, rigidity cutoffs, and elemental fractions with recent Auger results.
In total, 25 combined energy-spectrum and mass-composition fits are considered. Beyond
the cosmic-ray fluxes emitted by FR0 galaxies, this study predicts the secondary photon and
neutrino fluxes from UHECR interactions with intergalactic cosmic photon backgrounds.
The multimessenger approach, encompassing observational data and theoretical models,
helps elucidate the contribution of low-luminosity FR0 radio galaxies to the total cosmic-ray
energy density. Keywords: ultra-high-energy cosmic rays, UHECRs, UHECR energy spectrum, Pierre Auger Observatory, UHECR mass composition, UHECR sources, extragalactic magnetic fields, UHECR propagation, CRPropa tool Published in RUNG: 06.01.2025; Views: 657; Downloads: 10
Full text (4,14 MB) This document has many files! More... |
7. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticlesSenoy Thomas, K. Reethu, Thanveer Thajudheen, M. T. Z. Myint, S. H. Al-Harthi, 2017, original scientific article Abstract: The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface. Keywords: exchange interactions, magnetic ordering, ferromagnetic materials, magnetic materials, polycrystalline material, thin films, nanoparticle, nuclear structure models, oxides, transition metals Published in RUNG: 13.12.2024; Views: 774; Downloads: 5
Link to file This document has many files! More... |
8. Testing cosmology and fundamental physics with the Cherenkov Telescope ArrayH. Martínez-Huerta, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for γ-ray astronomy at energies above 30 GeV. Thanks to its unique capabilities, CTA observations will
address a plethora of open questions in astrophysics, ranging from the origin of cosmic messengers to the exploration of the frontiers of physics. In this note, we present a comprehensive sensitivity study to assess the potential of CTA to measure the γ-ray absorption on the extragalactic background light (EBL), to constrain or detect intergalactic magnetic fields (IGMFs), and probe physics beyond the standard model such as axion-like particles (ALPs) and Lorentz invariance violation (LIV), which could modify the γ-ray spectra features expected from EBL absorption. Our results suggest that CTA will have unprecedented sensitivity to detect IGMF signatures and will probe so-far unexplored regions of the LIV and ALP parameter space. Furthermore, an indirect measurement of the EBL and of its evolution will be performed with unrivaled precision. Keywords: very-high-energy gamma rays, the Cherenkov Telescope Array (CTA) Observatory, extragalactic background light (EBL), intergalactic magnetic fields (IGMFs), axion-like particles (ALPs), Lorentz invariance violation (LIV) Published in RUNG: 07.11.2024; Views: 776; Downloads: 5
Full text (739,83 KB) This document has many files! More... |
9. Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition dataA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article Abstract: The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff.
Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space.
We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie
of order Brms ≃ (50–100) nG (20 Mpc/ds)( 100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case,
the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E-2.
An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV. Keywords: ultra high energy cosmic rays, UHECR propagation, magnetic horizon effect, Pierre Auger Observatory Published in RUNG: 24.09.2024; Views: 965; Downloads: 1
Full text (3,65 MB) This document has many files! More... |
10. First utilization of magnetically-assisted photocatalytic iron ▫$oxide-TiO_2$▫ nanocomposites for the degradation of the problematic antibiotic ciprofloxacin in an aqueous environmentJosip Radić, Gregor Žerjav, Lucija Jurko, Perica Bošković, Lidija Fras Zemljič, Alenka Vesel, Andraž Mavrič, Martina Gudelj, Olivija Plohl, 2024, original scientific article Abstract: The emergence of antimicrobial resistance due to antibiotics in the environment presents significant public health, economic, and societal risks. This study addresses the need for effective strategies to reduce antibiotic residues, focusing on ciprofloxacin degradation. Magnetic iron oxide nanoparticles (IO NPs), approximately 13 nm in size, were synthesized and functionalized with branched polyethyleneimine (bPEI) to obtain a positive charge. These IO-bPEI NPs were combined with negatively charged titanium dioxide NPs (TiO2@CA) to form magnetically photocatalytic IO-TiO2 nanocomposites. Characterization techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), electrokinetic measurements, and a vibrating sample magnetometer (VSM), confirmed the successful formation and properties of the nanocomposites. The nanocomposites exhibited a high specific surface area, reduced mobility of photogenerated charge carriers, and enhanced photocatalytic properties. Testing the photocatalytic potential of IO-TiO2 with ciprofloxacin in water under UV-B light achieved up to 70% degradation in 150 min, with a degradation rate of 0.0063 min−1. The nanocomposite was magnetically removed after photocatalysis and successfully regenerated for reuse. These findings highlight the potential of IO-TiO2 nanocomposites for reducing ciprofloxacin levels in wastewater, helping curb antibiotic resistance. Keywords: photocatalytic degradation, magnetic iron oxide-TiO2 nanocomposites, hetero-agglomeration, multifunctionality, antibiotic ciprofloxacin, antimicrobial resistance Published in RUNG: 09.09.2024; Views: 1258; Downloads: 6
Full text (14,48 MB) This document has many files! More... |