1. Order fluctuation induced tunable light emission from carbon nano systemMohanachandran Nair Sindhu Swapna, Sankararaman S, 2019, original scientific article Abstract: The paper reports the thermal-induced order fuctuations, in a carbon nanosystem with carbon nanotubes (CNTs) synthesized
by the incomplete combustion of gingelly oil. The sample annealed at diferent temperatures (30–400 °C) is subjected to
various morphological and spectroscopic characterizations. The ultraviolet–visible spectroscopic and thermogravimetric
analyses reveal the CNTs in the sample. The high-resolution transmission electron microscopy (HR-TEM) also confrms the
formation of CNTs in the sample. The Raman spectrum and X-ray difraction pattern show the signature of multi-walled
to single-walled CNT transformation and thus an order fuctuation on annealing. The quantum yield of the sample, measured by integrating sphere method, yields 46.15% at an emission wavelength of 575 nm. When the excitation wavelength
is varied from 350 to 510 nm, the CIE coordinate moves from the white region to the yellowish-green region. The varying
amount of CNTs in the soot, upon annealing is found to vary the luminescence emission from the sample. The study reveals
the thermal-induced oscillatory order in carbon nanosystem with carbon nanotubes (CNTs) leading to tunable excitation/
thermal-dependent luminescence emission and thereby suggesting the possibility of converting the futile soot for fruitful
applications in photonics and nanoelectronics. Keywords: Carbon nanosystem, Single-walled carbon nanotubes, Multi-walled carbon nanotubes, Raman spectroscopy, Thermogravimetric analysis, CIE plot, Quantum yield, gingelly oil Published in RUNG: 05.07.2022; Views: 2192; Downloads: 0 This document has many files! More... |
2. From futile to fruitful: Diesel soot as white light emitterMohanachandran Nair Sindhu Swapna, Sankararaman S, 2018, original scientific article Abstract: The present work describes a solution for the effective use of the hazardous particulate matter (diesel soot) from the internal combustion engines (ICEs) as a potential material emitting white light for white light emitting diodes (WLEDs). The washed soot samples are subjected to Field Emission Scanning Electron Microscopy (FESEM), High- Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive Spectroscopy (EDS), UV-Visible, Photoluminescent (PL) Spectroscopy and quantum yield measurements. The CIE plot and Correlated Color Temperature (CCT) reveals the white fluorescence on photoexcitation. The sample on ultraviolet (UV) laser excitation, provides a visual confirmation of white light emission from the sample. The diesel soot collected from public transport buses of different years of manufacture invariably exhibit white fluorescence at an excitation of 350 nm. The sample show a quantum yield of 47.09%. The study is significant in the context of pollution and search for low-cost, rare-earth phosphor free material for white light emission and thereby turning the hazardous, futile material into a fruitful material that can be used for potential applications in photonics and electronics. Keywords: White light emitter, Diesel soot, CIE plot, Quantum yield, Fluorescence Published in RUNG: 30.06.2022; Views: 2191; Downloads: 0 This document has many files! More... |
3. Blue light emitting diesel soot for photonic applicationsMohanachandran Nair Sindhu Swapna, Sankararaman S, 2018, original scientific article Abstract: The present work is the first report of producing blue light emission from phosphor free and low-cost material—the diesel soot from the internal combustion engines (ICEs). The structural morphology is analyzed by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The optical characterization is done by recording UV–visible spectrum and photoluminescent Spectrum. The CIE plot and the power spectrum for the sample show blue emission. This is further verified by collecting diesel soot from the ICE of different year of make. A visual confirmation of blue emission is obtained by exciting the sample with UV laser. The presence of various allotropic forms of carbon in the sample is identified by x-ray diffraction, Fourier transform infrared and Raman spectroscopic analysis. Keywords: blue light emitter, diesel soot, photoluminescence, CIE plot Published in RUNG: 30.06.2022; Views: 1983; Downloads: 0 This document has many files! More... |
4. Particulate Exhaust Analysis from Internal Combustion EnginesMohanachandran Nair Sindhu Swapna, 2017, other scientific articles Abstract: Today the world is worried over the particulate emission from various forms of internal combustion engines. The present work is an attempt to understand the constituents of the particulate emission and its possible use. The particulate exhaust matter containing carbonaceous soot produced from the combustion of
fuel containing hydrocarbons shows the presence of significant amount of carbon Nanomaterials. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs) and carbon
nanoparticles (CNPs). Carbon nanotubes find application in fuel cells providing improved performance. The soot particles collected from the internal combustion diesel engines are cleaned, powdered and analyzed by various techniques. The
CNPs are characterized by Field Emission Scanning Electron Microscopy (FESEM), X-Ray Powder Diffraction (XRD), Energy Dispersive X ray diffraction (EDS), Raman Spectroscopy, Photoluminescence spectroscopy (PL), Power spectrum and CIE
plot. X Ray Diffraction and Raman spectroscopic analysis show the presence of carbon nanotubes in the amorphous materials. Keywords: HydrocarbonsL Carbon nanotubes, Diesel engines, CIE plot, EDX, Raman spectroscopy Published in RUNG: 30.06.2022; Views: 2291; Downloads: 0 This document has many files! More... |