1. Beyond surface area : enhanced pseudocapacitive properties of cobalt layered double hydroxide through structural modificationsAnja Siher, Ksenija Maver, Uroš Luin, Albin Pintar, Iztok Arčon, Andraž Mavrič, 2025, original scientific article Abstract: Cobalt hydroxide and other first-row transition metal hydroxides have gained significant attention as pseudocapacitor materials due to their rapid and reversible redox processes. Their layered structures facilitate interactions between electrolyte anions and cobalt cation sites within the bulk of the material, enabling higher charge density and extending redox activity beyond the particle surface. By controlled precipitation under hydrothermal conditions, the structure and morphology of cobalt hydroxides can be optimized to enhance electrochemical performance. Challenging conventional assumptions, surface area alone is not the primary factor driving increased pseudocapacitive performance. The hexagonal hydrotalcite-like structure, characterized by lower skeletal density and larger basal plane spacing, outperforms the monoclinic cobalt carbonate hydroxide structure, achieving an order of magnitude higher capacitance. In situ X-ray absorption spectroscopy provides critical insights into the pseudocapacitive behavior, revealing enhanced accessibility of Co2+ sites for electrochemical oxidation. While monoclinic cobalt carbonate hydroxide exhibits minimal changes in the Co2+ oxidation state, indicative of surface-limited redox activity, the hydrotalcite-like cobalt hydroxides show substantial shifts in the Co K-edge position, highlighting oxidation of Co2+ sites throughout the bulk. Keywords: pseudocapacitors, layered-double hydroxides, cobalt hydroxide, redox processes, in situ x-ray absorption spectroscopy Published in RUNG: 14.03.2025; Views: 526; Downloads: 7
Full text (1,48 MB) This document has many files! More... |
2. |
3. Non-covalent ligand-oxide interaction promotes oxygen evolutionQianbao Wu, Junwu Liang, Mengjun Xiao, Chang Long, Lei Li, Zhenhua Zeng, Andraž Mavrič, Xia Zheng, Jing Zhu, Matjaž Valant, 2023, original scientific article Abstract: Strategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak “non-bonding” interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO2 interaction that substantially elevates the population of Co4+ sites for improved water oxidation. We find that phenanthroline only coordinates with Co2+ forming soluble Co(phenanthroline)2(OH)2 complex in alkaline electrolytes, which can be deposited as amorphous CoOxHy film containing non-bonding phenanthroline upon oxidation of Co2+ to Co3+/4+. This in situ deposited catalyst demonstrates a low overpotential of 216 mV at 10 mA cm−2 and sustainable activity over 1600 h with Faradaic efficiency above 97%. Density functional theory calculations reveal that the presence of phenanthroline can stabilize CoO2 through the non-covalent interaction and generate polaron-like electronic states at the Co-Co center. Keywords: water oxidation, cobalt hydroxide, ligand-metal interactions Published in RUNG: 23.02.2023; Views: 3423; Downloads: 19
Full text (1,77 MB) |
4. |
5. Giant magneto–electric coupling in 100 nm thick Co capped by ZnO nanorodsGiovanni Vinai, Barbara Ressel, Piero Torelli, Federico Loi, Benoit Gobaut, Regina Ciancio, Barbara Casarin, Antonio Caretta, Luca Capasso, Fulvio Parmigiani, Francesco Cugini, Massimo Solzi, Marco Malvestuto, Roberta Ciprian, 2018, original scientific article Keywords: ZnO nanorods, Cobalt, X-rays absorption near edge spectroscopy Published in RUNG: 07.02.2018; Views: 5234; Downloads: 0 This document has many files! More... |
6. Conclusively Addressing the CoPc Electronic Structure: A Joint Gas- Phase and Solid-State Photoemission and Absorption Spectroscopy StudyTeng Zhang, I.E. Brumboiu, Valeria Lanzillotto, J. Lüder, C. Grazioli, Erika Giangrisostomi, R. Ovsyannikov, Y. Sassatelli, Ieva Bidermane, Monica de Simone, Marcello Coreno, Barbara Ressel, Matija Stupar, Maddalena Pedio, Petra Rudolf, Barbara Brena, Carla Puglia, 2017, original scientific article Keywords: Cobalt Phtalocyanine, photoemission spectroscopy, gas phase, solid state Published in RUNG: 07.02.2018; Views: 5741; Downloads: 0 This document has many files! More... |
7. Chemical and structural investigation of the cobalt phthalocyanineMatija Stupar, 2015, master's thesis Abstract: In the last two decades, studies on organic molecules mimicking substances of fundamental importance in nature, like chlorophyll or hemoglobin, have attracted researchers’ attention. These molecules are building blocks for a family of materials also referred to as “organic semiconductors”. Such compounds can be implemented in numerous applications, ranging from data-storage to light harvesting. Some of their fundamental advantages include low cost, light weight, relatively easy engineering and mechanical flexibility, compatible with bending plastic substrates.
In this thesis work we investigated the chemical, structural and electronic properties of cobalt phthalocyanines (CoPc). These molecules have promising applications in the field of magnetic data storage and spintronics in general, due to the ferromagnetic properties of the cobalt atom. Several techniques like photoemission core-level spectroscopy and valence band spectroscopy, together with X-ray absorption, have been used in order to determine the CoPc properties in gaseous phase, i.e. in the absence of interaction with the surrounding environment.
Another set of experiments was devoted to the commissioning of the CITIUS time-resolved photoemission setup, that will be used in future studies of CoPc molecules on surfaces. Keywords: Cobalt phthalocyanine (CoPc), photoemission spectroscopy (PES), X-ray absorption spectroscopy (XAS), synchrotron radiation, laser, high order harmonic generation (HHG), time resolved spectroscopy Published in RUNG: 29.09.2015; Views: 10511; Downloads: 286
Full text (2,96 MB) |