Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


41 - 50 / 56
First pagePrevious page123456Next pageLast page
41.
42.
Correlations between photocatalytic activity and Cu structure in Cu-modified TiO2-SiO2
T. Čižmar, published scientific conference contribution abstract

Keywords: Titanium dioxide, Cu-modified, TiO2-SiO2, photocatalysts, photocatalytic activity, Cu K-edge XANES, EXAFS
Published in RUNG: 26.06.2017; Views: 4504; Downloads: 0
This document has many files! More...

43.
Correlations between photocatalytic activity and chemical structure of Cu-modified TiO [sub] 2-SiO [sub] 2 nanoparticle composites
T. Čižmar, Iztok Arčon, Urška Lavrenčič Štangar, 2016, published scientific conference contribution abstract

Keywords: Cu-modified TiO2-SiO2, sol-gel, XANES, EXAFS
Published in RUNG: 06.02.2017; Views: 4125; Downloads: 0
This document has many files! More...

44.
Correlations between photocatalytic activity and chemical structure of Cu-modified TiO2–SiO2 nanoparticle composites
T. Čižmar, Urška Lavrenčič Štangar, Iztok Arčon, 2016, original scientific article

Abstract: Copper-modified TiO2–SiO2photocatalysts were prepared by sol–gel method based on organic copper,silicon and titanium precursors. Copper concentration varied from 0.1 to 3.0 mol%. A widely appliedmodel reaction of photocatalytic oxidation of terephtalic acid (TPA) in water solution was used in order toevaluate the catalytic activities of elaborated samples. The crystal structures of the titania components ofall tested titania–silica species were studied using XRD analysis. The influence of Cu2+cation incorporationon the crystal structure of titania, as well as the chemical states and the neighbouring structures of coppercations, have been examined by means of Cu K-edge EXAFS and XANES analysis. The experimental datashow that there is a ten times increase in photocatalytic activity when TiO2–SiO2matrix is modified with0.1 mol% of Cu. It can be supposed that an enhancement of photocatalytic activity of low-concentratedcopper-modified titania–silica nanocomposites is probably due to a close attachment of Cu2+cationsto the surfaces of photocatalytically active TiO2nanoparticles. In this case, Cu2+cations may possiblyact as free electron traps reducing the intensity of recombination between opposite free charge carriers(electrons, holes) available at the photocatalyst’s surface.
Keywords: Cu-modified TiO2–SiO2photocatalysts, Titanium dioxide, Metal doping, Cu K-edge XANES, EXAFS, Photocatalytic activitya
Published in RUNG: 17.01.2017; Views: 5135; Downloads: 0
This document has many files! More...

45.
Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure
Alojz Kodre, Iztok Arčon, Marta Debeljak, Mateja Potisek, Matevž Likar, Katarina Vogel-Mikuš, 2017, original scientific article

Abstract: Mercury (Hg) – plant – fungal interactions are only poorly studied. Hg speciation and ligand environment in maize roots inoculated with arbuscular mycorrhizal (AM) fungi were investigated in order to better understand the role of AM in Hg soil to root transfer. The maize plants were grown in Hg polluted substrate (50 mg g1 as dissolved HgCl2) and inoculated with AM fungi originating from: a) highly Hg polluted environment of a former Hg smelting site in Idrija, Slovenia, (Glomus sp. – sample AmI), and b) non-polluted environment (commercial AM inoculum Symbivit1 – sample AmC). Hg speciation and ligand environment in maize roots was studied by Hg-L3 XANES and EXAFS with emphasis on XAS methodology – modelling and fitting the XAFS spectra to extract in a reliable way as much information on Hg coordination as possible. The AmI plants developed more arbuscules and less vesicles than the AmC plants, and also accumulated more Hg in the roots. A clear difference in Hg coordination between the AM (AmC & AmI) and the control (ConC & ConI) plants is recognized in Hg L3-edge EXAFS analysis: in the ConC & ConI maize roots 73–80% of Hg is attached between two sulphur atoms at the distance of 2.34 Å. The remaining ligand is nitrogen at 2.04 Å. In AmI & AmC roots another Hg-S attachment encompassing four thiol groups at the S-distance of 2.50 Å are identified, accounting for 21–26%. AM fungi can modify Hg ligand environment in plant roots, thus playing an important role in biogeochemical cycling of Hg in terrestrial ecosystems.
Keywords: EXAFS XANES Arbuscular mycorrhiza Phytoremediation Toxicity Hg coordination Ligand environment
Published in RUNG: 27.09.2016; Views: 6103; Downloads: 0
This document has many files! More...

46.
Identifikacija, porazdelitev in vezavne oblike železa v rižu (Oryza sativa L.) z rentgensko absorpcijsko in emisijsko mikro-spektroskopijo
Bojan Šuc, 2016, undergraduate thesis

Abstract: V diplomskem delu smo raziskali vezavne oblike železa v različnih delih korenin riža s kombinacijo rentgenske absorpcijske spektroskopije in mikroskopije z metodo mikro-XANES. S tem smo želeli izboljšati razumevanje vnosa železovih spojin v rastline riža (Oryza sativa L.) na tkivnem nivoju. Rastline riža so bile vzgojene v hidroponskem sistemu z dodanim železom Fe2+ (kot FeSO4). Spektri mikro-XANES na absorpcijskem robu K železa so bili pomerjeni na prečnih rezinah korenin, zamrznjenih v tekočem dušiku, na žarkovni liniji ID21 sinhrotrona ESRF v Grenoblu v fluorescenčnem načinu. Pri analizi spektrov mikro-XANES smo preučili uporabnost metode linearnega kombiniranja referenčnih spektrov XANES železa izmerjenih na nizu referenčnih dvo- in trivalentnih železovih spojin. Rezultati so pokazali, da je možno s to metodo v rastlinskih vzorcih jasno ločiti med dvo- in trivalentnimi železovimi kompleksi in določiti njihov delež z natančnostjo ±1%. Prevladujoča valenca železa v vzorcih korenin je Fe3+. Prepoznavanje in razločevanje različnih železovih kompleksov je manj natančno. Natančnost pri določanju deleža različnih trivalentnih železovih kompleksov je med 10% in 30%. Nekaterih železovih kompleksov s to metodo ni mogoče razločiti med sabo, ker se njihovi spektri XANES premalo razlikujejo. Kot najpogostejše železove komplekse v koreninah riža smo prepoznali Fe2+-fitat med dvovalentnimi spojinami, med trivalentnimi pa: železov oksid/hidroxid Goethit α-FeOOH Fe3+-citrat in Fe3+-fitat. Na natančnost pri razločevanju železovih spojin znatno vplivajo statistični šum in sistematske napake v izmerjenih spektrih mikro-XANES. Rezultati razmerij med dvo- in trivalentnimi železovimi kompleksi v različnih delih korenin kažejo, da se rastline riža zaščitijo pred strupenim toksičnim dvovalentnim železom tako, da ga oksidirajo in tvorijo tako imenovani plak, oziroma oborino, s čimer omejijo vnos dvovalentnega železa.
Keywords: Rentgenska absorpcijska spektrometrija, riž, železo, mikro-XANES, metoda linearnega kombiniranja referenčnih spektrov
Published in RUNG: 06.09.2016; Views: 7865; Downloads: 241
.pdf Full text (2,98 MB)

47.
Correlations between photocatalytic activity and chemical structure in copper doped TiO2-SiO2 with surface/incorporated Cu2+ sites
Tihana Čižmar, Iztok Arčon, Urška Lavrenčič Štangar, 2016, published scientific conference contribution abstract

Abstract: Sol−gel method was used to synthesize copper doped TiO2-SiO2 with varied dopant concentrations using tetraisopropoxide (TTIP) and copper acetlyacetonate (CuAcAc) as titania and copper sources. Structural information of Cu cation incorporation and its chemical state in the coatings are determined with Cu K-edge EXAFS and XANES analysis. The correlations between chemical state of the Cu dopant and the photocatalytic properties of the new active coatings are discussed.
Keywords: dip-coating, titanium dioxide, metal doping, Cu K-edge XANES, photocatalytic activity
Published in RUNG: 07.07.2016; Views: 5663; Downloads: 0

48.
Study of Li-S batteries by S K-edge RIXS spectroscopy
Matjaž Kavčič, Matjaž Žitnik, Klemen Bučar, Marko Petrič, Iztok Arčon, Robert Dominko, Alen Vižintin, 2016, published scientific conference contribution abstract

Abstract: Li-S batteries are considered as one of the most promising candidates for future batteries in applications where high energy density is required [1]. Despite that the general principle of operation is known for a long time [2], the lack of detailed understanding of relevant operation mechanisms has so far prevented their extensive use. A Li-S battery is composed of a lithium metal anode and a sulfur based cathode, separated by a porous separator wetted with electrolyte. During the battery cycle the reduction and oxidation of S to Li2S and back proceeds through a complicated equilibrium mixture of compounds that are typically dissolved in the electrolyte in the form of long and short chain polysulfides. In order to improve our understanding of polysulfide formation and its interactions within electrode, which are essential to achieve the long term cycling stability, development and application of new analytical tools is required. In this work sulfur K-edge resonant X-ray emission (RXES) measurements were performed on the Li-S battery in operando mode. The experiment was performed at the ID26 beamline at ESRF using the Johansson type tender x-ray emission spectrometer [3]. Full K-L RIXS maps were recorded on a set of chemically prepared Li2Sx sample standards characterized by different Li:S stoichiometric ratio, followed by the operando measurements on Li-S battery. Using the spectra recorded on Li2Sx standards two excitation energies were chosen and RXES spectra from the back of the battery cathode were sequentially acquired during one discharge cycle (C20). The relative amounts of each sulfur compound in the cathode during the discharge cycle were determined from the linear combination fit using measured reference standard spectra. Because of resonant excitation conditions the sensitivity for the polysulfide detection was significantly enhanced. Our work sets up S K-edge RIXS spectroscopy as an important analytical tool to study the mechanism of Li-polysulfide formation in the cathode and their interaction with the host matrix and electrolyte.
Keywords: RIXS, RXES, Li-S battery, operando, Sulphur K-edge XANES, Lithium polysulphides, Li2S
Published in RUNG: 28.06.2016; Views: 5581; Downloads: 0
This document has many files! More...

49.
XAS and micro-XRF analysis of mono and bi-metallic exopolysaccharide (FePd-EPS) bio-generated by K. oxytoca
Iztok Arčon, Stefano Paganelli, Oreste Piccolo, Michele Gallo, Katarina Vogel-Mikuš, Franco Baldi, 2016, published scientific conference contribution abstract

Abstract: Bacteria Klebsiella oxytoca (DSM 29614) secret a specific exopolysaccharide (EPS) in the presence of Fe(III)-citrate, as sole carbon and energy source, and produces after 7 days an iron gel precipitate (Fe-EPS) [1]. In the presence of palladium or other metal species, the culture of K. oxytoca can produce other mono or bimetal species (Pd-EPS, FePd-EPS) [2]. These bio-materials may be used as green biogenerated catalysts or for other biotechnological purposes. In this work we present the analysis of the morphology and the chemical state of the metals in mono and bi-metallic (Fe-EPS, Pd-EPS, FePd-EPS) complexes, by a combination of micro X-ray fluorescence, X-ray absorption spectroscopy methods (XANES and EXAFS), and transmission electron microscopy. The results show that iron in monometallic Fe-EPS and bimetalic FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe3+, with a small amount of Fe2+ in the structure, as a mixture of different nano-crystalline iron oxides and hydroxides. Palladium on the other hand is found as Pd(0) in the form of metallic nanoparticles with fcc structure in both, bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. Access to the SR facilities at ESRF (beamline ID21, project LS-2225), DESY (beamline C) Hamburg (project I-20110511 EC) and ELETTRA (beamline XAFS, project 20115112) is acknowledged.
Keywords: Klebsiella oxytoca, Fe, Pd, XANES, EXAFS, exopolysaccharide, FePd-EPS
Published in RUNG: 28.06.2016; Views: 5482; Downloads: 0
This document has many files! More...

50.
Search done in 0.06 sec.
Back to top