11. Sn-modified TiO[sub]2 thin film photocatalysts prepared by low-temperature sol-gel processing : dissertationKsenija Maver, 2021, doctoral dissertation Abstract: Due to many advantageous physiochemical properties, titanium dioxide (TiO2) is the most widely used photocatalyst in numerous applications, such as wastewater treatment and air purification, self-cleaning surfaces and energy conversion (H2 generation). However, one of its disadvantages is the high electron-hole recombination rate, and coupling with other semiconductors is one of the strategies to improve it. The objective of this dissertation was to investigate how the photocatalytic activity of pure TiO2 can be improved by tin modification and to explain the mechanism of increased or hindered photoactivity in correlation with the structural properties of the modified TiO2 photocatalysts.
A new low-temperature sol-gel synthesis route was developed to prepare Sn- or SnO2-modified TiO2 photocatalysts. In both cases, organic tin and titanium precursors were used. Tin in the form of Sn cations was used to prepare Sn-modified TiO2. In this case, the precursors went through the sol-gel reaction together to form a Sn-TiO2 sol. In the case of SnO2 modification, the SnO2 sol was prepared separately and additionally mixed with the TiO2 sol to form a TiO2/SnO2 bicomponent semiconductor system. Different molar ratios of tin to titanium were prepared to investigate the correlation between the tin concentration and the photocatalytic properties of the photocatalysts in the form of thin films. The results were used to optimize the synthesis conditions to obtain an improved activity of the modified TiO2 photocatalysts under UV-irradiation.
The photocatalytic activity of the thin films was determined by measuring the degradation rate of an azo dye. An increase of up to 40 % in the photocatalytic activity of the dried samples (at 150 °C) was achieved when the TiO2 was modified with the Sn or SnO2 in a concentration range of 0.1 to 1 mol.%. At higher Sn or SnO2 loadings and after calcination of the samples at 500 °C, the photocatalytic activity of the photocatalyst was reduced compared to the unmodified TiO2.
Different characterization techniques (UV-Vis, XRD, nitrogen physisorption, TEM, SEM and XAS) were employed to clarify the mechanism responsible for the enhanced and hindered photocatalytic performance of the Sn- and SnO2-modified TiO2 photocatalysts. The results showed that a nanocrystalline structure is already achieved in the samples by the low-temperature film treatment (drying at 150 °C) and that the photocatalytic efficiency is mainly influenced by the crystalline phase composition: anatase/rutile in the case of Sn-modified and TiO2/SnO2 in the case of SnO2-modified TiO2. The crystal size and specific surface area differ insignificantly between the equally thermally treated samples and partly explain the differences in photoefficiency of the calcined samples compared to the dried samples. The structural study at the atomic level, using the Sn K-edge EXAFS, revealed that Sn cations act as nucleation sites for the anatase to rutile transformation in the Sn-modified TiO2 photocatalysts, while in the SnO2-modified TiO2 samples the nanocrystalline cassiterite SnO2 is bound to the TiO2 nanocrystallites via the Sn-O-Ti bond. In both cases, the advantage of coupling the two semiconductors was achieved by separating the charge carriers and thus prolonging their lifetime for accessibility to participate in the redox reactions. The maximum activity enhancement was achieved in the low concentration range (0.1–1 mol.%), which means that an optimal ratio and contact of the two phases are obtained for the given physical parameters, such as particle size, shape and specific surface area of the catalyst. Keywords: Sn-modified TiO2, SnO2-modified TiO2, low-temperature sol-gel, thin films, photocatalytic activity, anatase/rutile system, Sn K-edge EXAFS, dissertations Published in RUNG: 09.06.2021; Views: 6402; Downloads: 175 Link to full text This document has many files! More... |
12. Thermal and Elastic Characterization of Nanostructured Fe2O3 Polymorphs and TiO2‑Coated Fe2O3 Using Open Photoacoustic CellN Jovančić, D K Markushev, Dragan D. Markushev, S M Aleksić, D S Pantić, Dorota Korte, Mladen Franko, 2020, original scientific article Keywords: Elastic, Nanostructure, Photoacoustic, Polymorphs, Thermal · TiO2-coated Fe2O3 Published in RUNG: 19.05.2020; Views: 3682; Downloads: 0 This document has many files! More... |
13. Improved photocatalytic activity of anatase-rutile nanocomposites induced by low-temperature sol-gel Sn-modification of TiO2Ksenija Maver, Iztok Arčon, Urška Lavrenčič Štangar, Mattia Fanetti, Saim Emin, Matjaž Valant, 2020, original scientific article Abstract: The Sn-modified TiO2 photocatalysts are prepared by low-temperature sol-gel processing based on organic titanium
and tin precursors with varied Sn concentrations (from 0.1–20 mol .%). The role of Sn dopant as the
promotor of the formation of TiO2 rutile crystalline phase is explained and the optimal Sn concentration for
preparation of efficient Sn-modified titania photocatalyst is determined. Up to 40 % increase in photocatalytic
activity is achieved in Sn-modified TiO2 photocatalytic thin films dried at 150 °C with low Sn concentrations in
the range from 0.1 to 1 mol .%. At low Sn concentrations optimal ratio between anatase and rutile (nano)crystals
is obtained, which facilitates charge separation at the TiO2 photocatalyst’s surface. When the concentration of Sn
increases above 5 mol.% or when the films are calcined at 500 °C, the relative amount of rutile phase with
inferior photocatalytic activity, increases and the nanocrystals of titania grow, leading to fewer active sites per
unit mass and the reduction of activity in comparison to unmodified TiO2. Keywords: Anatase-rutile
Sn-modified TiO2
XAS analysis
Photocatalytic activity Published in RUNG: 10.02.2020; Views: 3916; Downloads: 0 This document has many files! More... |
14. Self-cleaning and photoactive TiO2 – ZrO2 – SiO2 films on thermosensitive and glass substratesNives Vodišek, Urška Lavrenčič Štangar, 2017, published scientific conference contribution abstract Abstract: Nanosized TiO2 is well-known for its photocatalytic property. From the combination of photocatalysis and photoinduced hydrophilicity properties, thin films of this material have also anti-fogging, self-cleaning and antimicrobial properties. There are numerous deposition techniques e.g. spin-coating, dip-coating, spraying, the most suitable one is chosen based on substrate or solution characteristics. Thin films are often required to be transparent for visible light, especially if we use them on transparent substrates, or they should not affect the color of the substrate. Radicals that are produced during photosensitizing process are able to destroy structure of a substrate and substrate can lose mechanical stability [1,2]. Some studies show that adding a SiO2 protective layer can prevent the damage of the substrate [3–5]. Ti-Zr containing sols were prepared with sol-gel process, where titanium(IV) isopropoxide, zirconium(IV) butoxide and ethanol were hydrolyzed with aqueous solution of perchloric acid. Solution was then refluxed for 48 hours. During that time crystallization and deaggregation took place and that resulted in a stable final solution [6]. To prepare suitable solution for production of durable films silica binder was added. On glass and plastic substrates, thin films were deposited with the dip-coating method and dried with a heat-gun. Thin films were characterized by measurements of photocatalytic activity with terephthalic acid as model organic pollutant subjected to oxidation via fluorescent degradation product, photoinduced superhydrophilicity phenomena, UV-Vis and ATR-FTIR spectroscopy, SEM images, as well as mechanical properties measurements.
References
[1] H. Schmidt, M. Naumann, T.S. Müller, M. Akarsu, Thin Solid Films (2006) 502, 132– 137.
[2] W. A. Daoud, J.H. Xin, Y.H. Zhang, Surf. Sci. (2005) 599, 69–75.
[3] Ž. Senić, S. Bauk, M. Vitorović-Todorović, N. Pajić, A. Samolov, D. Rajić, Sci. Tech. Rev. (2011) 61, 63–72.
[4] T. Yuranova, R. Mosteo, J. Bandara, D. Laub, J. Kiwi, J. Mol. Catal. A: Chem. (2006) 244, 160–167.
[5] T. Yuranova, D. Laub, J. Kiwi, Catal. Today (2007) 122, 109–117.
[6] N. Vodišek, K. Ramanujachary, V. Brezová, U. Lavrenčič Štangar, Catal. Today (2017) 287, 142–147. Keywords: Self-cleaning surface, photocatalysis, TiO2, ZrO2, SiO2, PVC, PMMA, thermosensitive substrates, glass Published in RUNG: 05.03.2019; Views: 4668; Downloads: 0 This document has many files! More... |
15. Correlations between photocatalytic activity and chemical structure of Cu-modified TiO2-SiO2 nanoparticle compositesT. Čižmar, doctoral dissertation Abstract: The objective of this dissertation was to examine how copper modification can improve the photocatalytic activity of TiO2-SiO2 and to explain the correlation between Cu concentration and chemical state of Cu cations in the TiO2-SiO2 matrix, as well as the photocatalytic activity under the UV/solar irradiation.
The Cu-modified TiO2-SiO2 photocatalysts were prepared by a low temperature sol-gel method based on organic copper, silicon and titanium precursors with varied Cu concentrations (from 0.05 to 3 mol%). The sol-gels were dried at 150 °C to obtain the photocatalysts in the powder form. To test thermal stability, additional set of photocatalysts was obtained by calcinating dried samples in air at 500 °C for 1 h.
The photocatalytic activity was determined by a fluorescence-based method of terephthalic acid decomposition. Up to three times increase in photocatalytic activity of air-dried samples is obtained when TiO2-SiO2 matrix is modified with Cu in a narrow concentration range from 0.05 to 0.1 mol%. At higher Cu loadings the photocatalytic activity of Cu-modified photocatalyst is smaller than in the unmodified reference TiO2-SiO2 photocatalyst. Calcined samples showed significantly reduced photocatalytic activity compared to air-dried samples.
XRD analysis showed that all Cu-modified TiO2-SiO2 nanocomposites with different Cu concentrations have the same crystalline structure as unmodified TiO2-SiO2 nanocomposites (air-dried or calcined). The addition of Cu does not change the relative ratio between the anatase and brookite phase or unit cell parameters of the two TiO2 crystalline structures. TEM analysis showed that the addition of Cu does not change the morphology of TiO2-SiO2 catalyst dried at 150 °C.
The Cu K-edge XANES and EXAFS analysis were used to determine valence state and local structure of Cu cations in Cu-modified TiO2-SiO2 photocatalyst. The results elucidate the mechanism responsible for the improved or hindered photocatalytic activity. In the air-dried samples with low Cu content, which exhibit largest activity, Cu-O-Ti connections are formed, suggesting that the activity enhancement is due to Cu(II) cations attachment on the surface of the photocatalytically active TiO2 nanoparticles, so Cu(II) cations may act as free electron traps, reducing the intensity of recombination between electrons and holes at the TiO2 photocatalyst’s surface. At higher Cu loadings no additional Cu-O-Ti connections are formed, instead only Cu-O-Cu connections are established, indicating the formation of amorphous or nanocrystalline Cu(II) oxide, which hinders the photocatalytic activity of TiO2. Calcination of Cu-modified TiO2-SiO2 photocatalysts at 500 °C induces significant structural changes: Cu-O-Ti connections are lost, Cu partially incorporates into the SiO2 matrix and amorphous copper oxides, which again reduce the photocatalytic activity of the material, are formed. Keywords: titanium dioxide, Cu-modified TiO2-SiO2 photocatalyst, photocatalytic activity, Cu K-edge XANES, EXAFS. Published in RUNG: 17.12.2018; Views: 5835; Downloads: 159 Full text (3,05 MB) |
16. Photocatalytic properties of metal modified TiO2 by photothermal techniquesZeinab Ebrahimpour, Olena Pliekhova, Humberto Cabrera, Dorota Korte, Urška Lavrenčič Štangar, Mladen Franko, 2018, published scientific conference contribution abstract Keywords: Thermal lens spectrometry, Photothermal beam deflection spectroscopy, Dye remediation, Photothermal technique, Photocatalytic degradation, Reactive Blue 19, TiO2 modification Published in RUNG: 09.11.2018; Views: 4699; Downloads: 0 This document has many files! More... |
17. Transparent Photocatalytic Thin Films on Flexible Polymer SubstratesNives Vodišek, Andraž Šuligoj, Dorota Korte, Urška Lavrenčič Štangar, 2018, original scientific article Keywords: photocatalysis, self-cleaning surface, TiO2, ZrO2, SiO2, transparent films, thermosensitive
substrates, PMMA, PVC, PES, PVDF Published in RUNG: 19.10.2018; Views: 4452; Downloads: 152 Full text (4,37 MB) |
18. |
19. XAS studies of Sn modified TiO2 coatingsKsenija Maver, Iztok Arčon, Urška Lavrenčič Štangar, 2018, published scientific conference contribution abstract Abstract: Coatings based on TiO2 are extensively investigated material for the preparation of surfaces which are referred as self-cleaning. Under solar illumination these coatings catalyze pollutants degradation and enhance their removal from the surface due to photoinduced superhydrophilicity [1]. There are two main drawbacks of using pure TiO2 (anatase) as a photocatalyst; i) its band gap lies in the UVA region so it can exploit only a part of the sunlight spectrum, and ii) it has a high degree of recombination between photo generated electrons and holes on the surface. There are various strategies to improve the photocatalytic efficiency of TiO2, one of them is the modification with transition metals.
Based on our previous experiences with sol-gel synthesis of low-temperature TiO2 thin films [2], we prepared a series of Sn modified TiO2 photocatalysts. As a starting material only organic (Ti and Sn alkoxide) precursors were used. The loadings of Sn cations were varied in the range of 0.05 to 20 mol.%. The coatings, deposited on glass substrates by dip-coating technique, were dried at 150 oC. In addition, another set of photocatalyst coatings was prepared by further calcination at 500 °C in air. The comparison of photocatalytic activities of Sn modified TiO2 to unmodified TiO2 showed that Sn loadings in the range of 1-10 mol.% improved photocatalytic activity up to 8 times. At lower loadings of Sn, the photocatalytic activity was improved only by 30 %. After the coatings are calcined, their photocatalytic activity was significantly reduced.
The objective of the research was to examine the mechanism responsible for photocatalytic properties of Sn modified TiO2 and to to clarify the role of Sn cations in the TiO2 photocatalytic process. For this purpose, Sn and Ti K-edge XANES and EXAFS analysis was used to precisely determine the local structure and the site of incorporation of Sn cations on titania nanoparticles in the coatings. We examined the hypothesis that the solid-solid interface was a crucial structural feature that facilitates charge separation and enhances photocatalytic efficiency of titania. Keywords: Sn, EXAFS, TiO2 fotokatalizator Published in RUNG: 12.09.2018; Views: 4378; Downloads: 0 This document has many files! More... |
20. |