Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Multiple allocation p-hub location problem for content placement in VoD services: a differential evolution based approach
Soumen Atta, Goutam Sen, 2020, original scientific article

Abstract: In video-on-demand (VoD) services, large volumes of digital data are kept at hubs which are spatially distributed over large geographic areas and users are connected to these hubs based on their demands. In this article, we consider a large database of video files, that are pre-partitioned to multiple segments based on the demand patterns of users. These segments are restricted to be located only in hubs. Here, users are allowed to be allocated to multiple hubs and all hubs are assumed to be connected with each other. We jointly decide the location of hubs, the placement of segments to these hubs and then the assignment of users to these hubs as per their demand patterns and finally, we find the optimal paths to route the demands of users for different segments having the objective of minimizing the total routing cost. In this article, a differential evolution (DE) based method is proposed to solve the problem. The proposed DE-based method utilizes an efficient function to evaluate the objective value of a candidate solution to the proposed problem. It also incorporates two problem-specific solution refinement techniques for faster convergence. Instances of the problem are generated from the real world movie database and the proposed method is applied to these instances and the performance is evaluated against the benchmark results obtained from CPLEX.
Keywords: Video-on-demand (VoD) services, Content distribution networks, Database segment location, Hub location, Multiple hub allocation, Differential evolution (DE), IBM ILOG CPLEX
Published in RUNG: 17.04.2023; Views: 1785; Downloads: 0
This document has many files! More...

2.
Solving a new variant of the capacitated maximal covering location problem with fuzzy coverage area using metaheuristic approaches
Soumen Atta, Priya Ranjan Sinha Mahapatra, Anirban Mukhopadhyay, 2022, original scientific article

Abstract: The Maximal Covering Location Problem (MCLP) is concerned with the optimal placement of a fixed number of facilities to cover the maximum number of customers. This article considers a new variant of MCLP where both the coverage radii of facilities and the distance between customer and facility are fuzzy. Moreover, the finite capacity of each facility is considered. We call this problem the capacitated MCLP with fuzzy coverage area (FCMCLP), and it is formulated as a 0–1 linear programming problem. In this article, two classical metaheuristics: particle swarm optimization, differential evolution, and two new-generation metaheuristics: artificial bee colony algorithm, firefly algorithm, are proposed for solving FCMCLP. Each of the customized metaheuristics utilizes a greedy deterministic heuristic to generate their initial populations. They also incorporate a local neighborhood search to improve their convergence rates. New instances of FCMCLP are generated from the traditional MCLP instances available in the literature, and IBM’s CPLEX solver is used to generate benchmark solutions. An experimental comparative study among the four customized metaheuristics is described in this article. The performances of the proposed metaheuristics are also compared with the benchmark solutions obtained from CPLEX.
Keywords: Facility Location Problem (FLP), Fuzzy Capacitated Maximal Covering Location Problem (FCMCLP), Particle Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), Firefly Algorithm (FA)
Published in RUNG: 08.03.2023; Views: 2627; Downloads: 0
This document has many files! More...

Search done in 0.01 sec.
Back to top