1. Studies of the UHECR Mass Composition and Hadronic Interactions with the FD and SD of the Pierre Auger ObservatoryJ.M. Carceller, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: With data on the depth of maximum Xmax collected during more than a decade of operation of the Pierre Auger Observatory, we report on the inferences on the mass composition of UHECRs in the energy range E = 10[sup]17.2 − 10[sup]19.6 eV and on the measurements of the proton-air cross section for energies up to 10[sup]18.5 eV. We also present the results on Xmax obtained using the information on the particle arrival times recorded by the SD stations allowing us to extend the Xmax measurements up to 10[sup]20 eV. The inferences on mass composition, in particular using the data of the SD, are subject to systematic uncertainties
due to uncertainties in the description of hadronic interactions at ultra-high energies. We
discuss this problem with respect to the properties of the muonic component of extensive
air-showers as derived from the SD data. Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers (EAS), EAS muonic component, EAS electromagnetic component, Pierre Auger Observatory, UHECR mass composition, UHECR hadronic interactions Published in RUNG: 11.10.2023; Views: 1535; Downloads: 11 Full text (128,28 KB) This document has many files! More... |
2. Measurement of the fluctuations in the number of muons in extensive air showers with the Pierre Auger ObservatoryA. Aab, Andrej Filipčič, Gašper Kukec Mezek, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2021, original scientific article Keywords: ultra-high energy cosmic rays, extensive air showers (EAS), EAS muonic component, hadronic interaction models, Pierre Auger Observatory Published in RUNG: 29.04.2021; Views: 2752; Downloads: 0 This document has many files! More... |
3. Calibration of the underground muon detector of the Pierre Auger ObservatoryA. Aab, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2021, original scientific article Abstract: To obtain direct measurements of the muon content of extensive air showers with energy above 10[sup]16.5 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m[sup]2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m[sup]2 close to the intersection of the shower axis with the ground to much less than one per m[sup]2 when far away, the necessary broad dynamic range is achieved by the simultaneous implementation of two acquisition modes in the read-out electronics: the binary mode, tuned to count single muons, and the ADC mode, suited to measure a high number of them. In this work, we present the end-to-end calibration of the muon detector modules: first, the SiPMs are calibrated by means of the binary channel, and then, the ADC channel is calibrated using atmospheric muons, detected in parallel to the shower data acquisition. The laboratory and field measurements performed to develop the implementation of the full calibration chain of both binary and ADC channels are presented and discussed. The calibration procedure is reliable to work with the high amount of channels in the UMD, which will be operated continuously, in changing environmental conditions, for several years. Keywords: ultra-high energy cosmic rays, extensive air showers (EAS), EAS muonic component, Pierre Auger Observatory, underground muon detector, detector calibration Published in RUNG: 14.04.2021; Views: 3372; Downloads: 140 Link to full text This document has many files! More... |
4. Initial results of a direct comparison between the Surface Detectors of the Pierre Auger Observatory and the Telescope ArrayR. Takeishi, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The Pierre Auger Observatory (Auger) in Mendoza, Argentina and
the Telescope Array (TA) in Utah, USA aim at unraveling the
origin and nature of Ultra-High Energy Cosmic Rays (UHECR).
At present, there appear to be subtle differences between Auger
and TA results and interpretations. Joint working groups have
been established and have already reported preliminary
findings. From an experimental standpoint, the Surface
Detectors (SD) of both experiments make use of different
detection processes not equally sensitive to the components of
the extensive air showers making it to the ground. In particular, the muonic component of the shower measured at
ground level can be traced back to the primary composition,
which is critical for understanding the origin of UHECRs.
In order to make direct comparisons between the SD detection
techniques used by Auger and TA, a joint SD experimental
research program is being developed. In the first phase,
two Auger SD stations were deployed at the TA Central Laser
Facility to compare station-level responses. This paper
concentrates on the results obtained with the first Auger SD
station (an “Auger North” design), which has been operating
since October 2014. The second Auger SD station, identical to
the ones being operated at Auger in Argentina (an “Auger South”
design), was just deployed in June 2015. The second phase of
this research program will be to co-locate six Auger North SD
stations with TA stations in the field to compare event-level
responses. Keywords: Ultra-High Energy Cosmic Rays, Pierre Auger Observatory, Telescope Array, extensive air showers, secondary cosmic rays, muonic shower component, surface detectors Published in RUNG: 08.03.2016; Views: 5416; Downloads: 191 Full text (1,42 MB) |
5. Upgrade of the Pierre Auger Observatory (AugerPrime)Ralph Engel, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The data collected with the Pierre Auger Observatory have led
to a number of surprising discoveries. While a strong
suppression of the particle flux at the highest energies has
been established unambiguously, the dominant physics processes
related to this suppression could not be identified.
Within the energy range covered by fluorescence detector
observations with sufficient statistics, an unexpected change
of the depth of maximum distribution is found. Using LHC-tuned
interaction models these observations can be understood as a
correlated change of the fluxes of different mass groups.
On the other hand, they could also indicate a change of
hadronic interactions above the energy of the ankle.
Complementing the water Cherenkov detectors of the surface
array with scintillator detectors will, mainly through the
determination of the muonic shower component, extend the
composition sensitivity of the Auger Observatory into the flux
suppression region. The upgrade of the Auger Observatory will
allow us to estimate the primary mass of the highest energy
cosmic rays on a shower-by-shower basis. In addition to
measuring the mass composition the upgrade will open the
possibility to search for light primaries at the highest
energies, to perform composition-selected anisotropy studies,
and to search for new phenomena including unexpected changes
of hadronic interactions. After introducing the physics
motivation for upgrading the Auger Observatory the planned
detector upgrade is presented. In the second part
of the contribution the expected performance and improved
physics sensitivity of the upgraded Auger Observatory are
discussed. Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, elemental composition sensitivity, Auger upgrade (AugerPrime), muonic shower component, scintillator detectors Published in RUNG: 03.03.2016; Views: 5041; Downloads: 225 Full text (659,02 KB) |