Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 32
First pagePrevious page1234Next pageLast page
Recent results from the Pierre Auger Observatory
Serguei Vorobiov, 2022, published scientific conference contribution abstract (invited lecture)

Abstract: Ultra-high-energy cosmic rays (UHECRs) are mostly protons and heavier nuclei arriving on Earth from space and producing particle cascades in the atmosphere, ”extensive air showers”. As of today, the most precise and high-statistics data set of the rare (≤ 1 particle per per year above 10[sup]19 eV) UHECR events is obtained by the Pierre Auger Observatory, a large area (~3000 hybrid detector in Argentina. The Auger Observatory determines the arrival directions and energies of the primary UHECR particles and provides constraints for their masses. In this talk, I will present and discuss the recent results, including the detailed measurements of the cosmic-ray energy spectrum features, the study of the anisotropies in the UHECR arrival directions at large and intermediate angular scales, the multi-messenger searches, and the inferred cosmic-ray mass composition. Finally, the progress of the current upgrade of the Observatory, "AugerPrime" which is aimed at improving the sensitivity to the mass composition of ultra-high-energy cosmic rays, will be presented.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR mass composition, energy spectrum, anisotropies, AugerPrime upgrade
Published in RUNG: 23.12.2022; Views: 451; Downloads: 3
URL Link to full text
This document has many files! More...

The energy spectrum of ultra-high-energy cosmic rays measured by the Telescope Array FADC fluorescence detectors in monocular mode
T. Abu-Zayyad, J. P. Lundquist, 2013, original scientific article

Abstract: We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array’s third fluorescence detector [T. Abu-Zayyad et al., The energy spectrum of Telescope Array’s middle drum detector and the direct comparison to the high resolution fly’s eye experiment, Astroparticle Physics 39 (2012) 109-119,, Available from: ]. This combined spectrum corroborates the recently published Telescope Array surface detector spectrum [T. Abu-Zayyad, et al., The cosmic-ray energy spectrum observed with the surface detector of the Telescope Array experiment, ApJ 768 (2013) L1,, Available from: ] with independent systematic uncertainties.
Keywords: UHECR, Energy spectrum, Fluorescence, Monocular
Published in RUNG: 19.05.2020; Views: 1898; Downloads: 0
This document has many files! More...

The Cosmic Ray Energy Spectrum between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode
R.U. Abbasi, J. P. Lundquist, 2018, original scientific article

Abstract: We report on a measurement of the cosmic ray energy spectrum by the Telescope Array Low-Energy Extension (TALE) air fluorescence detector (FD). The TALE air FD is also sensitive to the Cherenkov light produced by shower particles. Low-energy cosmic rays, in the PeV energy range, are detectable by TALE as Cherenkov events. Using these events, we measure the energy spectrum from a low energy of ~2 PeV to an energy greater than 100 PeV. Above 100 PeV, TALE can detect cosmic rays using air fluorescence. This allows for the extension of the measurement to energies greater than a few EeV. In this paper, we describe the detector, explain the technique, and present results from a measurement of the spectrum using ~1000 hr of observation. The observed spectrum shows a clear steepening near 10^17.1 eV, along with an ankle-like structure at 10^16.2 eV. These features present important constraints on the origin of galactic cosmic rays and on propagation models. The feature at 10^17.1 eV may also mark the end of the galactic cosmic ray flux and the start of the transition to extragalactic sources.
Keywords: astroparticle physics, cosmic rays, UHECR, energy spectrum
Published in RUNG: 30.04.2020; Views: 2002; Downloads: 0
This document has many files! More...

Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique
T. Abu-Zayyad, J. P. Lundquist, 2015, original scientific article

Abstract: We measure the spectrum of cosmic rays with energies greater than eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.
Keywords: Ultra-high energy cosmic rays, Telescope Array, Hybrid spectrum
Published in RUNG: 30.04.2020; Views: 2171; Downloads: 0
This document has many files! More...

Energy-position correlation anisotropy of ultra-high energy cosmic rays with Telescope Array Data
J. P. Lundquist, published scientific conference contribution abstract

Abstract: Indication of an energy dependent intermediate-scale anisotropy has been found in the arrival directions of ultra-high energy cosmic rays with energies above 20 EeV in the northern hemisphere, using 7 years of TA surface detector data. The previously reported “hotspot“ excess for E>57 EeV is found to correspond to a deficit, or “coldspot“, of events for energies 2057 EeV has a Li-Ma statistical significance of 4.62σ, and the deficit for energies 20Keywords: UHECR, energy spectrum, anisotropy, magnetic deflection
Published in RUNG: 29.04.2020; Views: 2022; Downloads: 0
This document has many files! More...

A systematic uncertainty on the energy scale of the Telescope Array fluorescence detectors
T. Fujii, J. P. Lundquist, 2018, published scientific conference contribution

Abstract: The Telescope Array experiment (TA) is the largest cosmic-ray detector in the northern hemi-sphere and consists of a surface detector (SD) array, plus three fluorescence detector (FD) stations overlooking the SD. The large field-of-view of an FD allows for reconstruction of the air-shower development in the atmosphere by imaging ultra-violet fluorescence light from atmospheric nitrogen excited by UHECRs. In estimation of the primary energy it is necessary to add to the calorimetric energy observed by the FD a “missing energy”, meaning the fraction of the primary energy that is not deposited by charged particles in the air. We report on the measurement of the missing energy from observed data collected by the TA FD and TA SD, independently of Monte Carlo simulations, using a technique pioneered by the Pierre Auger Observatory. We also address the effect on the energy scale attributed to fluorescence yield parameters.
Keywords: UHECR, cosmic rays, energy spectrum
Published in RUNG: 29.04.2020; Views: 1947; Downloads: 74
.pdf Full text (4,74 MB)

Search done in 0.07 sec.
Back to top