Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 20
First pagePrevious page12Next pageLast page
1.
Prospects for ▫$\gamma-ray$▫ observations of the Perseus galaxy cluster with the Cherenkov Telescope Array
K. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, original scientific article

Abstract: Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster’s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at γ-ray energies and are predicted to be sources of large-scale γ-ray emission due to hadronic interactions in the intracluster medium (ICM). In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse γ-ray emission from the Perseus galaxy cluster. We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio X500 within the characteristic radius R500 down to about X500 < 0.003, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp = 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRp down to about ∆αCRp ≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-based γ-ray DM limits from clusters observations on the velocity- averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with τχ > 10[sup]27 s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario.
Keywords: cosmic ray experiments, dark matter experiments, galaxy clusters, gamma ray experiments, very-high energy gamma rays, Cherenkov Telescope Array Observatory, Perseus galaxy cluster
Published in RUNG: 09.10.2024; Views: 458; Downloads: 1
.pdf Full text (9,26 MB)
This document has many files! More...

2.
Dark matter line searches with the Cherenkov Telescope Array
S. Abe, Saptashwa Bhattacharyya, Christopher Eckner, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, original scientific article

Abstract: Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin.
Keywords: dark matter experiments, dark matter theory, gamma ray experiments, Cherenkov Telescope Array Observatory
Published in RUNG: 24.09.2024; Views: 492; Downloads: 5
.pdf Full text (2,04 MB)
This document has many files! More...

3.
Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article

Abstract: The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation. We find that a model containing a flux contribution from the starburst galaxy catalog of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of 10EV provides a fair simultaneous description of all three observables. The starburst galaxy model is favored with a significance of 4.5σ (considering experimental systematic effects) compared to a reference model with only homogeneously distributed background sources. By investigating a scenario with Centaurus A as a single source in combination with the homogeneous background, we confirm that this region of the sky provides the dominant contribution to the observed anisotropy signal. Models containing a catalog of jetted active galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they cannot adequately describe the measured arrival directions.
Keywords: ultra high energy cosmic rays, cosmic ray experiments, Pierre Auger Observatory, active galactic nuclei
Published in RUNG: 19.01.2024; Views: 1452; Downloads: 40
.pdf Full text (3,93 MB)
This document has many files! More...

4.
Voltage-dependent FTIR and 2D infrared spectroscopies within the electric double layer using a plasmonic and conductive electrode
Nan Yang, Matthew J. Ryan, Minjung Son, Andraž Mavrič, Martin Zanni, 2023, original scientific article

Abstract: Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10–20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3–5 nm Al2O3, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages.
Keywords: two-dimensional infrared spectroscopy, infrared transparent substrate, voltage-dependent infrared experiments
Published in RUNG: 24.02.2023; Views: 2023; Downloads: 6
.pdf Full text (6,07 MB)

5.
6.
7.
Experimental bounds on sterile-active neutrino mixing angles
Mihael Petač, 2015, master's thesis

Abstract: Despite the success of the Standard Model in the last few decades, we know it is not complete. There is strong motivation for assuming the existence of additional heavy neutral leptons, which can account for active neutrino masses and possibly also have cosmological implications. In this work I consider the Standard Model with two neutral lepton singlets (sterile neutrinos) with degenerated masses in the range 20MeV - 2GeV. The constraints on the active-sterile neutrino mixing angles are evaluated based on recent neutrino oscillations data. Using these constraints the bounds from accelerator experiments are reanalyzed for the case of the considered model. Finally, the results are compared with cosmological constraints coming from Big Bang nucleosynthesis and the nMSM resonant leptogenesis.
Keywords: Sterile neutrinos, Neutrino mixing, See-saw, High-Energy Physics - Phenomenology, High-Energy Physics - Experiments
Published in RUNG: 01.10.2021; Views: 2651; Downloads: 52
.pdf Full text (1,93 MB)

8.
Testing the predictions of axisymmetric distribution functions of galactic dark matter with hydrodynamical simulations
Mihael Petač, Julien Lavalle, Arturo Núñez-Castiñeyra, Emmanuel Nezri, 2021, original scientific article

Abstract: Signal predictions for galactic dark matter (DM) searches often rely on assumptions regarding the DM phase-space distribution function (DF) in halos. This applies to both particle (e.g. p-wave suppressed or Sommerfeld-enhanced annihilation, scattering off atoms, etc.) and macroscopic DM candidates (e.g. microlensing of primordial black holes). As experiments and observations improve in precision, better assessing theoretical uncertainties becomes pressing in the prospect of deriving reliable constraints on DM candidates or trustworthy hints for detection. Most reliable predictions of DFs in halos are based on solving the steady-state collisionless Boltzmann equation (e.g. Eddington-like inversions, action-angle methods, etc.) consistently with observational constraints. One can do so starting from maximal symmetries and a minimal set of degrees of freedom, and then increasing complexity. Key issues are then whether adding complexity, which is computationally costy, improves predictions, and if so where to stop. Clues can be obtained by making predictions for zoomed-in hydrodynamical cosmological simulations in which one can access the true (coarse-grained) phase-space information. Here, we test an axisymmetric extension of the Eddington inversion to predict the full DM DF from its density profile and the total gravitational potential of the system. This permits to go beyond spherical symmetry, and is a priori well suited for spiral galaxies. We show that axisymmetry does not necessarily improve over spherical symmetry because the (observationally unconstrained) angular momentum of the DM halo is not generically aligned with the baryonic one. Theoretical errors are similar to those of the Eddington inversion though, at the 10-20% level for velocity-dependent predictions related to particle DM searches in spiral galaxies. We extensively describe the approach and comment on the results.
Keywords: galaxy dynamics, dark matter experiments, dark matter simulations, dark matter theory, cosmology, nongalactic astrophysics, astrophysics of galaxies, high energy physics
Published in RUNG: 01.10.2021; Views: 2803; Downloads: 66
URL Link to full text
This document has many files! More...

9.
Equilibrium axisymmetric halo model for the Milky Way and its implications for direct and indirect dark matter searches
Mihael Petač, 2020, original scientific article

Abstract: We for the first time provide self-consistent axisymmetric phase-space distribution models for the Milky Way's dark matter (DM) halo which are carefully matched against the latest kinematic measurements through Bayesian analysis. By using broad priors on the individual galactic components, we derive conservative estimates for the astrophysical factors entering the interpretation of direct and indirect DM searches. While the resulting DM density profiles are in good agreement with previous studies, implying ρ⊙≈10-2 M⊙/pc3, the presence of baryonic disc leads to significant differences in the local DM velocity distribution in comparison with the standard halo model. For direct detection, this implies roughly 30% stronger cross section limits at DM masses near detectors maximum sensitivity and up to an order of magnitude weaker limits at the lower end of the mass range. Furthermore, by performing Monte Carlo simulations for the upcoming DARWIN and DarkSide-20k experiments, we demonstrate that upon successful detection of heavy DM with coupling just below the current limits, the carefully constructed axisymmetric models can eliminate bias and reduce uncertainties by more then 50% in the reconstructed DM coupling and mass, but also help in a more reliable determination of the scattering operator. Furthermore, the velocity anisotropies induced by the baryonic disc can lead to significantly larger annual modulation amplitude and sizable differences in the directional distribution of the expected DM-induced events. For indirect searches, we provide the differential J factors and compute several moments of the relative velocity distribution that are needed for predicting the rate of velocity-dependent annihilations. However, we find that accurate predictions are still hindered by large uncertainties regarding the DM distribution near the galactic center.
Keywords: dark matter, astrophysics, galaxies, high energy physics, experiments, phenomenology
Published in RUNG: 01.10.2021; Views: 2805; Downloads: 42
URL Link to full text
This document has many files! More...

10.
Evolution of organic aerosols in the atmosphere
Jose L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. David Allan, H. Coe, Katja Džepina, 2009, original scientific article

Abstract: Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
Keywords: secondary organic aerosol, source apportionment, aerodyne aerosol mass spectrometer, global field measurements, laboratory experiments
Published in RUNG: 11.04.2021; Views: 3089; Downloads: 0
This document has many files! More...

Search done in 0.04 sec.
Back to top