Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


41 - 44 / 44
First pagePrevious page12345Next pageLast page
41.
Extension of the measurement of the proton-air cross section with the Pierre Auger Observatory
Ralf Ulrich, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: With hybrid data of the Pierre Auger Observatory it is possible to measure the cross section of proton-air collisions at energies far beyond the reach of the LHC. Since the first measurement by the Pierre Auger Collaboration the event statistics has increased significantly. The proton-air cross section is now estimated in the two energy intervals in lg(E/eV) from 17.8 to 18 and from 18 to 18.5. These energies are chosen so that they maximise the available event statistics and at the same time lie in the region most compatible with a significant primary proton fraction. Of these data, only the 20% of most proton-like events are considered for the measurement. Furthermore, with a new generation of hadronic interaction models which have been tuned to LHC data, the model-dependent uncertainties of the measurement are re-visited.
Keywords: Pierre Auger Observatory, extensive air showers, proton-air cross section, hadronic interaction models
Published in RUNG: 03.03.2016; Views: 4529; Downloads: 196
.pdf Full text (114,02 KB)

42.
Azimuthal asymmetry in the risetime of the Surface Detector signals of the Pierre Auger Observatory
Ignacio Minaya, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable sensitive to the mass composition of cosmic rays above 3 × 10[sup]18 eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJetII- 04 and Epos-LHC) an indication that the mean cosmic-ray mass increases with energy, as has been inferred from other studies. However the absolute values derived for the mass are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec θ)max.
Keywords: Pierre Auger Observatory, Surface Detector, risetime of detector signal, azimuthal asymmetry, extensive air showers
Published in RUNG: 03.03.2016; Views: 4718; Downloads: 196
.pdf Full text (243,04 KB)

43.
Search for Ultra-relativistic Magnetic Monopoles with the Pierre Auger Observatory
Toshihiro Fujii, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: Ultra-relativistic magnetic monopoles, possibly a relic of phase transitions in the early universe, would deposit an amount of energy comparable to UHECRs in their passage through the atmosphere, producing highly distinctive air shower profiles. We have performed a search for ultra-relativistic magnetic monopoles in the sample of air showers with profiles measured by the fluorescence detector of the Pierre Auger Observatory. No candidate was found to satisfy our selection criteria and we establish upper limits on the flux of ultra-relativistic magnetic monopoles - the first from an UHECR detector - improving over previous results by up to an order of magnitude.
Keywords: ultra-relativistic magnetic monopoles, extensive air showers, Pierre Auger Observatory
Published in RUNG: 03.03.2016; Views: 4629; Downloads: 195
.pdf Full text (188,24 KB)

44.
Measurements of Xmax above 10[sup]17 eV with the fluorescence detector of the Pierre Auger Observatory
Alessio Porcelli, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: For the first time the Pierre Auger Collaboration presents〈Xmax〉and σ(Xmax) measurements covering nearly three decades of energy. In this analysis we include new Xmax data obtained with the High Elevation Auger Telescopes (HEAT) enhancement. The HEAT telescopes cover a field of view ranging from 30◦ to 60◦ of elevation and are located next to one of the standard fluorescence detector sites (Coihueco). The combination of the HEAT and Coihueco telescopes covers a field of view from ∼2◦ up to ∼60◦ of elevation. Thus, the combination can sample the longitudinal profile of nearby lower energy showers, allowing us to extend the energy range down to 10[sup]17 eV.
Keywords: extensive atmospheric showers, longitudinal shower profile, depth of the shower maximum, Pierre Auger Observatory
Published in RUNG: 03.03.2016; Views: 5341; Downloads: 236
.pdf Full text (718,30 KB)

Search done in 0.03 sec.
Back to top