1. Large-scale cosmic-ray anisotropies with 19 yr of data from the Pierre Auger ObservatoryA. Abdul Halim, P. Abreu, M. Aglietta, Ingo Allekotte, K. Almeida Cheminant, Jon Paul Lundquist, Shima Ujjani Shivashankara, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article Abstract: We present results of the measurement of large-scale anisotropies in the arrival directions of
ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation,
prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are
reconstructed above 4 EeV in four energy bins. Besides the established dipolar anisotropy in right
ascension above 8 EeV, the Fourier amplitude of the 8–16 EeV energy bin is now also above the 5σ
discovery level. No time variation of the dipole moment above 8 EeV is found, setting an upper limit
to the rate of change of such variations of 0.3% per year at the 95% confidence level. Additionally,
the results for the angular power spectrum are shown, demonstrating no other statistically
significant multipoles. The results for the equatorial dipole component down to 0.03 EeV are
presented, using for the first time a data set obtained with a trigger that has been optimized for
lower energies. Finally, model predictions are discussed and compared with observations, based
on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.6 EeV. Keywords: ultra–high-energy cosmic rays, UHECRs, UHECR anisotropies, Pierre Auger Observatory, dipolar anisotropy in right ascension, Fourier amplitude analysis, angular power spectrum, equatorial dipole component, UHECR source emission scenarios Published in RUNG: 26.11.2024; Views: 251; Downloads: 0 Full text (1,16 MB) This document has many files! More... |
2. Results from the Pierre Auger ObservatoryEsteban Roulet, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: Some of the results on ultrahigh-energy cosmic rays that have been obtained with the Pierre Auger Observatory are presented. These include measurements of the spectrum, composition and anisotropies. Possible astrophysical scenarios that account for these results are discussed. Keywords: ultra-high-energy cosmic rays (UHECRs), Pierre Auger Observatory, UHECR energy spectrum, UHECR anisotropies, UHECR mass composition Published in RUNG: 11.10.2023; Views: 1783; Downloads: 8 Full text (811,90 KB) This document has many files! More... |
3. Recent results from the Pierre Auger ObservatorySerguei Vorobiov, 2022, published scientific conference contribution abstract (invited lecture) Abstract: Ultra-high-energy cosmic rays (UHECRs) are mostly protons and heavier nuclei arriving on Earth from space and producing particle cascades in the atmosphere, ”extensive air showers”. As of today, the most precise and high-statistics data set of the rare (≤ 1 particle per sq.km per year above 10[sup]19 eV) UHECR events is obtained by the Pierre Auger Observatory, a large area (~3000 sq.km) hybrid detector in Argentina. The Auger Observatory determines the arrival directions and energies of the primary UHECR particles and provides constraints for their masses.
In this talk, I will present and discuss the recent results, including the detailed measurements of the cosmic-ray energy spectrum features, the study of the anisotropies in the UHECR arrival directions at large and intermediate angular scales, the multi-messenger searches, and the inferred cosmic-ray mass composition. Finally, the progress of the current upgrade of the Observatory, "AugerPrime" which is aimed at improving the sensitivity to the mass composition of ultra-high-energy cosmic rays, will be presented. Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR mass composition, energy spectrum, anisotropies, AugerPrime upgrade Published in RUNG: 23.12.2022; Views: 2287; Downloads: 9 Link to full text This document has many files! More... |
4. Large-scale anisotropies above 0.03 EeV measured by the Pierre Auger ObservatoryEsteban Roulet, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays (UHECRs), Pierre Auger Observatory, UHECR arrival directions, large-scale anisotropies Published in RUNG: 24.07.2020; Views: 3612; Downloads: 78 Full text (894,55 KB) |
5. Anisotropies of the highest energy cosmic-ray events recorded by the Pierre Auger Observatory in 15 years of operationLorenzo Caccianiga, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays (UHECR), UHECR anisotropies, Pierre Auger Observatory Published in RUNG: 16.06.2020; Views: 3636; Downloads: 105 Full text (1,65 MB) |
6. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger ObservatoryA. Aab, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2017, original scientific article Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays (UHECR), UHECR anisotropies, angular power spectrum, needlet wavelet analysis Published in RUNG: 23.06.2017; Views: 5064; Downloads: 0 This document has many files! More... |
7. Astroparticles at the High Energy Frontier: Results from the Pierre Auger ObservatoryGonzalo Parente, Andrej Filipčič, Ahmed Saleh, Samo Stanič, Darko Veberič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2014, published scientific conference contribution Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays (UHECR), UHECR energy spectrum, mass composition, anisotropies Published in RUNG: 20.06.2017; Views: 5791; Downloads: 0 This document has many files! More... |