Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 51
First pagePrevious page123456Next pageLast page
1.
Prospects for ▫$\gamma-ray$▫ observations of the Perseus galaxy cluster with the Cherenkov Telescope Array
K. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, original scientific article

Abstract: Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster’s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at γ-ray energies and are predicted to be sources of large-scale γ-ray emission due to hadronic interactions in the intracluster medium (ICM). In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse γ-ray emission from the Perseus galaxy cluster. We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio X500 within the characteristic radius R500 down to about X500 < 0.003, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp = 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRp down to about ∆αCRp ≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-based γ-ray DM limits from clusters observations on the velocity- averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with τχ > 10[sup]27 s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario.
Keywords: cosmic ray experiments, dark matter experiments, galaxy clusters, gamma ray experiments, very-high energy gamma rays, Cherenkov Telescope Array Observatory, Perseus galaxy cluster
Published in RUNG: 09.10.2024; Views: 148; Downloads: 0
.pdf Full text (9,26 MB)
This document has many files! More...

2.
Detection of gamma-ray sources and search for dark matter signals with Cherenkov Telescope Array surveys : dissertation
Veronika Vodeb, 2024, doctoral dissertation

Abstract: Gamma rays serve as important messengers in modern astrophysics, offering insights into the most energetic processes in the cosmos. Advancements in gamma-ray astronomy, facilitated by international scientific collaboration, have expanded its reach and capabilities. The Fermi-Large Area Telescope (Fermi-LAT) has so far contributed immensely to our understanding of the gamma-ray sky at GeV energies, surveying numerous source classes. At the same time, ground-based observatories like H.E.S.S., MAGIC, VERITAS, HAWC, and LHASSO, enable the exploration of high-energy (HE) phenomena across various energy scales, reaching the PeV range. The collective data from Fermi-LAT and ground-based instruments provide a comprehensive picture of cosmic phenomena across diverse energy regimes. Efforts to catalog HE gamma-ray sources have resulted in the detection of several thousand sources at GeV, including Pulsar Wind Nebulae (PWNe), Supernova Remnants (SNRs), pulsars, blazars, and Gamma-Ray Bursts (GRBs), with the observational capability to study their spectral and spatial morphology enhancing our understanding of their origin and evolution. Looking ahead, the Cherenkov Telescope Array (CTA) represents the next frontier in ground-based gamma-ray astronomy. Operating at very high energies (VHE) between 20 GeV and 300 TeV, CTA's improved sensitivity, angular resolution, and expanded field of view (FoV) promise enhanced imaging of extended sources and performance of large-scale surveys. CTA's Key Science Projects (KSPs) include the Extragalactic (EGAL) survey, a survey of a quarter of the extragalactic sky, and the Galactic Plane Survey (GPS), a survey of the entire Galactic Plane (GP). The KSPs will receive dedicated observation time and careful planning to ensure the optimization of their scientific output. As CTA is currently entering the construction phase, simulations are being extensively employed to predict its response to various signals, playing a vital role in comprehending CTA's response and sensitivity to different signals. The derived predictions are paving the way for estimating the CTA's scientific output, informing the observational strategy, and ensuring its success in maximizing the contribution to HE gamma-ray astronomy. In this thesis, I contribute to assessing the sensitivity of the CTA surveys, particularly the GPS and the EGAL survey, to diverse astrophysical sources and signals. Focusing on the GPS, I delve into understanding the detectability of pulsar halos, which emit multi-TeV gamma rays, the detection of which was recently reported by the HAWC Observatory. The study involves a spatial-spectral likelihood analysis, evaluating sensitivity to simple Gaussian extended sources and physically modeled sources. Employing a template-fitting approach, I analyze CTA's GPS sensitivity to extended sources and explore the prospects for pulsar halo detection and characterization. A preliminary population study addresses the visibility of pulsar halos to CTA's GPS and explores the angular sensitivity to extended sources. The thesis sets the detectability prospects of pulsar halos with CTA and investigates what fraction of the preliminary pulsar halo population CTA will be able to probe. The thesis extends its exploration into the persistent mystery of dark matter (DM), a fundamental puzzle in cosmology. The search for DM signals remains a vigorous pursuit in the physics community, utilizing various astrophysical messengers resulting from DM particle annihilation or decay. I investigate the potential of CTA's GPS to detect dark sub-halos within our galaxy, utilizing a similar approach as in the sensitivity assessment to pulsar halos, applied to recent sub-halo population simulations. Furthermore, the thesis addresses the intricate task of disentangling DM components from astrophysical contributions in the observed gamma-ray sky. In terms of the EGAL survey, employing advanced statistical methods such as the cross-correlation technique, I explore the prospects of using CTA's EGAL survey to correlate the Extragalactic Gamma-ray Background (EGRB) with galaxy catalogs, providing insights into DM properties. While traditional methods rely on likelihood analysis with background subtraction or template fitting, the emergence of supervised machine learning (ML) offers a novel, potentially more effective approach for cataloging the sky. The thesis touches upon the usability of ML in the high and VHE gamma-ray sky. My study focuses on CTA's GPS and utilizes deep-learning-based algorithms in a detection pipeline for the automatic classification of extended sources from gamma-ray data. As CTA stands at the forefront of gamma-ray astronomy as the next-generation observatory, the research presented in this thesis contributes a small step towards answering the open questions about pulsar halos and DM, showcasing the potential breakthroughs that may emerge from CTA's observations. The detailed likelihood analysis performed aims to advance our understanding of these enigmas, from the physical intricacies of pulsar halos to the elusive nature of DM, driven by curiosity about the continuous exploration of the Universe's mysteries.
Keywords: high-energy gamma-ray astronomy, astroparticle physics, Cherenkov Telescope Array, pulsar halos, dark matter, dissertations
Published in RUNG: 06.06.2024; Views: 793; Downloads: 10
.pdf Full text (36,25 MB)

3.
Study of downward Terrestrial Gamma-ray Flashes with the surface detector of the Pierre Auger Observatory
Roberta Colalillo, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The surface detector (SD) of the Pierre Auger Observatory, consisting of 1660 water-Cherenkov detectors (WCDs), covers 3000 km2 in the Argentinian pampa. Thanks to the high efficiency of WCDs in detecting gammarays, it represents a unique instrument for studying downward Terrestrial Gamma-ray Flashes (TGFs) over a large area. Peculiar events, likely related to downward TGFs, were detected at the Auger Observatory. Their experimental signature and time evolution are very different from those of a shower produced by an ultrahigh-energy cosmic ray. They happen in coincidence with low thunderclouds and lightning, and their large deposited energy at the ground is compatible with that of a standard downward TGF with the source a few kilometers above the ground. A new trigger algorithm to increase the TGF-like event statistics was installed in the whole array. The study of the performance of the new trigger system during the lightning season is ongoing and will provide a handle to develop improved algorithms to implement in the Auger upgraded electronic boards. The available data sample, even if small, can give important clues about the TGF production models, in particular, the shape of WCD signals. Moreover, the SD allows us to observe more than one point in the TGF beam, providing information on the emission angle.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, surface detectors, extensive air shower, terrestrial gamma-ray flashes
Published in RUNG: 23.01.2024; Views: 1224; Downloads: 7
.pdf Full text (1,04 MB)
This document has many files! More...

4.
The Cherenkov Telescope Array
Daniel Mazin, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. It will be capable of detecting gamma rays in the energy range from 20 GeV to more than 300 TeV with unprecedented precision in energy and directional reconstruction. With more than 100 telescopes of three different types it will be located in the northern hemisphere at La Palma, Spain, and in the southern at Paranal, Chile. CTA will be one of the largest astronomical infrastructures in the world with open data access and it will address questions in astronomy, astrophysics and fundamental physics in the next decades. In this presentation we will focus on the status of the CTA construction, the status of the telescope prototypes and highlight some of the physics perspectives.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, POpulation Synthesis Theory Integrated project for very high-energy emission
Published in RUNG: 04.12.2023; Views: 1555; Downloads: 5
.pdf Full text (27,92 MB)
This document has many files! More...

5.
POSyTIVE : a GRB population study for the Cherenkov Telescope Array
Maria Grazia Bernardini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, population Synthesis Theory, very high-energy emission
Published in RUNG: 04.12.2023; Views: 2157; Downloads: 3
.pdf Full text (1,50 MB)
This document has many files! More...

6.
Cherenkov Telescope Array Science : a multi-wavelength and multi-messenger perspective
Ulisses Barres de Almeida, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) will be the major global observatory for VHE gamma-ray astronomy over the next decade and beyond. It will be an explorer of the extreme universe, with a broad scientific potential: from understanding the role of relativistic cosmic particles, to the search for dark matter. Covering photon energies from 20 GeV to 300 TeV, and with an angular resolution unique in the field, of about 1 arc min, CTA will improve on all aspects of the performance with respect to current instruments, surveying the high energy sky hundreds of times faster than previous TeV telescopes, and with a much deeper view. The very large collection area of CTA makes it an important probe of transient phenomena. The first CTA telescope has just been inaugurated in the Canary Islands, Spain, and as more telescopes are added in the coming years, scientific operation will start. It is evident that CTA will have important synergies with many of the new generation astronomical and astroparticle observatories. In this talk we will review the CTA science case from the point of view of its synergies with other instruments and facilities, highlighting the CTA needs in terms of external data, as well as the opportunities and strategies for cooperation to achieve the basic CTA science goals.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA performances, transient VHE sources, CTA science
Published in RUNG: 04.12.2023; Views: 2280; Downloads: 6
.pdf Full text (1,16 MB)
This document has many files! More...

7.
The Cherenkov Telescope Array. Science Goals and Current Status
Rene A. Ong, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution (invited lecture)

Abstract: The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA), cosmic particle acceleration, astrophysics of extreme environments, physics beyond the Standard Model
Published in RUNG: 11.10.2023; Views: 1381; Downloads: 10
.pdf Full text (3,28 MB)
This document has many files! More...

8.
Insight Into Lightning Initiation via Downward Terrestrial Gamma-ray Flash Observations at Telescope Array
J. Remington, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: Due to the difficulty of direct measurement of the thunderstorm environment, in particular the electric field strengths, the initial stages of lightning breakdown remain mysterious. The 1994 discovery of Terrestrial Gamma-ray Flashes (TGFs) and their implications for megaVolt potentials within thunderclouds has proved to be a valuable source of information about the breakdown process. The Telescope Array Surface Detector (TASD) --- a 700 km^2 scintillator array in Western Utah, U.S.A --- coupled with a lightning mapping array, fast sferic (field change) sensor and broadband interferometer, has provided unique insight into the properties of this energetic radiation and of lightning initiation in general. In particular, microsecond-scale timing comparisons have clearly established that downward TGFs occur during strong initial breakdown pulses (IBPs) of downward negative cloud-to-ground and intracloud flashes. In turn, the IBPs are produced by streamer-based fast negative breakdown. Investigations into downward TGFs with the TASD have significantly evolved with recent upgrades to lightning instrumentation. A second state-of-the-art broadband interferometer allows high-resolution stereo observation of lightning development. A high-speed optical video camera, set to be deployed in Spring 2021, will allow simultaneous observation of the visual component of lightning responsible for TGF production. Finally, a suite of ground based static electric field mills will provide new information on the large-scale properties of the thunderstorms in which downward TGFs arise. In this talk, we present the most recent TGF observations from the Telescope Array.
Keywords: Telescope Array, ground array, ultra-high energy, cosmic rays, photons, terrestrial gamma-ray flashes, gamma-rays, lightning
Published in RUNG: 02.10.2023; Views: 1343; Downloads: 7
.pdf Full text (2,76 MB)
This document has many files! More...

9.
Downward Terrestrial Gamma-ray Flashes at the Pierre Auger Observatory?
R. Colalillo, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: At the Pierre Auger Observatory, designed primarily to study ultra-high-energy cosmic rays, phenomena related to atmospheric electricity are also observed. Particularly, events have been detected with the surface detector, characterized by long-lasting signals (tens of microseconds) and event footprints much larger (up to 200 km2) than those produced by the highest energy cosmic rays. Moreover, some of them appear to be accompanied by smaller events occurring in the same area within about 1 ms and probably produced by the same phenomenon. A previously reported correlation with the World Wide Lightning Location Network, as well as the observation of very low-altitude clouds, confirm that such events are related to thunderstorms. An ad-hoc reconstruction points to high-energy particles being produced very close to the ground, suggesting that they originate from electrons accelerated to relativistic energies in strong electric fields inside low clouds, as is the case for terrestrial gamma-ray flashes above thunderstorms. A clear explanation of the observed phenomenon is hindered by two facts. One is that the rate of such events, detected serendipitously, is very small (less than 2 events/year) and decreases further after optimization of the surface detector trigger for low-energy shower-events. The second is that most events show a puzzling lack of signals in the central part of the footprint. We have studied in detail both effects and will present such studies here. We developed a strategy for a dedicated trigger to enhance the detection efficiency for these events associated with atmospheric-electricity events.
Keywords: Pierre Auger Observatory, surface detection, ultra-high energy, cosmic rays, photons, electrons, gamma-ray flashes, lightning
Published in RUNG: 29.09.2023; Views: 1361; Downloads: 7
.pdf Full text (2,42 MB)
This document has many files! More...

10.
Sensitivity to keV-MeV dark matter from cosmic-ray scattering with current and the upcoming ground-based arrays CTA and SWGO
Igor Reis, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: A wealth of astrophysical and cosmological observational evidence shows that the matter content of the universe is made of about 85% of non-baryonic dark matter. Huge experimental efforts have been deployed to look for the direct detection of dark matter via their scattering on target nucleons, their production in colliders, and their indirect detection via their annihilation products. Inelastic scattering of high-energy cosmic rays off dark matter particles populating the Milky Way halo would produce secondary gamma rays in the final state from the decay of the neutral pions produced in such interactions, providing a new avenue to probe dark matter properties. We compute here the sensitivity for H.E.S.S.-like observatory, a current-generation ground-based Cherenkov telescopes, to the expected gamma-ray flux from collisions of Galactic cosmic rays and dark matter in the center of the Milky Way. We also derive sensitivity prospects for the upcoming Cherenkov Telescope Array (CTA) and Southern Wide-field Gamma-ray Observatory (SWGO). The expected sensitivity allows us to probe a poorly-constrained range of dark matter masses so far, ranging from keV to sub-GeV, and provide complementary constraints on the dark matter-proton scattering cross section traditionally probed by deep underground direct dark matter experiments.
Keywords: Cherenkov Telescope Array, CTA, very-high-energy gamma-ray astroparticle physics, instrument response functions, machine learning
Published in RUNG: 26.09.2023; Views: 1536; Downloads: 8
.pdf Full text (713,85 KB)
This document has many files! More...

Search done in 0.04 sec.
Back to top