Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Vibrational spectra of am-Al 2 O 3 : tuning a parametric model. : Written report: in fulfillment of Diploma Seminar 1FAF29 requirements
Kurtović Jasmin, 2021, research project (high school)

Abstract: The present diploma seminar work has been dedicated first to the implementation of a procedure to calculate the vibrational density of states of two structural models of vitreous SiO 2 (v- SiO 2 ) and amorphous Al 2 O 3 (am-Al 2 O 3 ) models, and next to tune a parametric model for the calculation of the infrared (IR) spectra of am-Al 2 O 3 , in particular of the imaginary part of the dielectric function. The ground state of both structural models is obtained by relaxing the atomic structure by using the conjugate gradient method as implemented in the LAMMPS code. Vibrational frequencies and modes are obtained, in the harmonic approximation, by diagonalizing the dynamical matrices calculated for the given v-SiO 2 and am-Al 2 O 3 structural models. Dynamical matrices are obtained through a finite differences approach and vibrational density of states are plotted by applying Gaussian broadening. The calculation of the dielectric function requires the knowledge of the vibrational frequencies as well as the knowledge of the dynamical (or Born) charge tensors related to the atoms of the am-Al 2 O 3 structural model. For the latter model, a parametrization of the ab-initio Born charge tensors has been carried out with the purpose to allow for the fast calculation of the IR spectrum of any other am- Al 2 O 3 model without the need to calculate for it the Born charge tensors using expensive ab- initio methods. The parametrization of Born charge tensors takes into account, for aluminium atoms, only of the isotropic charge which depends on coordination number and average Al- O bond length of aluminium atoms, while for oxygen atoms coordinated to three Al atoms (75%), dynamical charges are parametrized also by the area bounded by aluminium atoms nearest neighbours of the 3-coordinated oxygen atom. Moreover for analyzing the dynamical charge tensors of 3-coordinated oxygen atoms a decomposition in terms of the representations of the spatial rotations was used. The IR spectrum obtained by means of the above described parametrization provides a good approximation to the IR spectrum obtained by using the ab- initio calculated dynamical charges, as it differs from it, on average, by around 5.1% which is much better (12%) than using a average isotropic charge model (i.e. diagonal Born charge tensors where each diagonal element is one third of the average isotropic charge).
Keywords: Vibrational spectra, am-Al 2 O 3, parametric model
Published in RUNG: 15.09.2021; Views: 2634; Downloads: 0
This document has many files! More...

2.
3.
Vibrational spectra of vitreous SiO2 and vitreous GeO2 from first principles
Luigi Giacomazzi, Alfredo Pasquarello, 2007, original scientific article

Keywords: SiO2, GeO2, glasses, ab-initio, vibrational spectra, Raman
Published in RUNG: 16.10.2018; Views: 4017; Downloads: 0
This document has many files! More...

4.
Vibrational properties of vitreous GeSe2 with the Becke–Lee–Yang–Parr density functional
Luigi Giacomazzi, Carlo Massobrio, Alfredo Pasquarello, 2011, original scientific article

Keywords: GeSe2, glass, vibrational spectra, BLYP, Raman, first-principles, DFT, ab-initio
Published in RUNG: 15.10.2018; Views: 3826; Downloads: 0
This document has many files! More...

5.
First-principles investigation of electronic, structural, and vibrational properties of a-Si3N4
Luigi Giacomazzi, Paolo Umari, 2009, original scientific article

Keywords: silicon nitride, first-principles, Raman, vibrational spectra
Published in RUNG: 15.10.2018; Views: 3842; Downloads: 0
This document has many files! More...

6.
Search done in 0.02 sec.
Back to top