41. SEARCH FOR NEUTRINOS AT EXTREME ENERGIES WITH THE PIERRE AUGER OBSERVATORYMarta Trini, 2019, doctoral dissertation Abstract: The detection of Ultra-High-Energy (UHE) neutrinos around and above 10 18 eV (1 EeV) can be the key to
answering the long-standing question of the origin of the UHE cosmic rays. The Pierre Auger Observatory
is the largest experiment that can detect the extensive air showers produced when the cosmic rays and
neutrinos interact in the earth’s atmosphere. In particular, with the Infilled array of the Surface Detector
of the Pierre Auger Observatory we can detect sub-EeV neutrino-induced particle showers. In this thesis
we demonstrate that it is possible to discriminate neutrino-induced showers from the background showers
produced by the more numerous nucleonic cosmic rays. The sensitivity to neutrinos is enhanced in the
inclined directions with respect to the vertical to the ground, where cosmic ray-induced showers starting in
the upper layers of the atmosphere are dominated by the muonic component of the shower, while deeply-
penetrating neutrino showers in contrast exhibit a large electromagnetic component. Based on this idea in
this thesis we have developed a search procedure for UHE neutrinos that consists on selecting inclined
events in the Infilled array of the Pierre Auger Observatory in which the signals in the water-Cherenkov
stations are spread in time, characteristic of the presence of electromagnetic component in the shower. We
have established a complete chain of criteria to first select the inclined events among the sample of all
events triggering the Infilled array, and then identifying those that have a large electromagnetic component
at ground, and hence can be considered as neutrino candidates. We have identified a single variable, the
so-called area-over-peak averaged over all of the stations in each event, as a suitable observable for neutrino
identification purposes. The neutrino selection was established using extensive Monte Carlo simulations of
the neutrino-induced showers in the Infilled array of Auger as well as a fraction of the data assumed to
be totally constituted of background nucleonic cosmic rays. Using these neutrino simulations we have also
computed the exposure of the Infilled array to UHE neutrinos in the period 1 January 04 - 31 December 2017.
Associated systematic uncertainties on the exposure are also described. Expecting no candidate neutrinos in
the period up to 31 December 2017, and adopting a differential neutrino diffuse flux dN ν /dE ν = k E ν −2 in
the energy range from 0.05 to 1 EeV, we have obtained a 90% C.L. upper limit on the all neutrino flavor,
k 90 < 7.97 × 10 −8 GeV cm −2 s −1 sr −1 . Keywords: astroparticles, astrophysical neutrinos, cosmic rays showers, Pierre Auger Observatory, Infilled
array Published in RUNG: 03.10.2019; Views: 6059; Downloads: 156
Full text (6,02 MB) |
42. Mass composition of cosmic rays with energies from 10^17.2 eV to 10^20 eV using surface and fluorescence detectors of the Pierre Auger ObservatoryGašper Kukec Mezek, 2018, published scientific conference contribution Abstract: Ultra-high-energy cosmic rays (UHECRs) are highly energetic particles with EeV energies, exceeding the capabilities of man-made colliders. They hold information on extreme astrophysical processes that create them and the medium they traverse on their way towards Earth. However, their mass composition at such energies is still unclear, because data interpretation depends on our choice of high energy hadronic interaction models. With its hybrid detection method, the Pierre Auger Observatory has the possibility to detect extensive air showers with an array of surface water-Cherenkov stations (SD) and fluorescence telescopes (FD). We present recent mass composition results from the Pierre Auger Collaboration using observational parameters from SD and FD measurements. Using the full dataset of the Pierre Auger Observatory, implications on composition can be made for energies above 10^17.2 eV. Keywords: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, fluorescence telescopes, water-Cherenkov stations Published in RUNG: 24.05.2019; Views: 4513; Downloads: 114
Full text (573,00 KB) |
43. Mass composition of ultra-high energy cosmic rays at the Pierre Auger ObservatoryGašper Kukec Mezek, 2019, doctoral dissertation Abstract: Cosmic rays with energies above 10^18 eV, usually referred to as ultra-high energy cosmic rays (UHECR), have been a mystery from the moment they have been discovered. Although we have now more information on their extragalactic origin, their direct sources still remain hidden due to deviations caused by galactic magnetic fields. Another mystery, apart from their production sites, is their nature. Their mass composition, still uncertain at these energies, would give us a better understanding on their production, acceleration, propagation and capacity to produce extensive air showers in the Earth's atmosphere. Mass composition studies of UHECR try to determine their nature from the difference in development of their extensive air showers.
In this work, observational parameters from the hybrid detection system of the Pierre Auger Observatory are used in a multivariate analysis to obtain the mass composition of UHECR. The multivariate analysis (MVA) approach combines a number of mass composition sensitive variables and tries to improve the separation between different UHECR particle masses. Simulated distributions of different primary particles are fitted to measured observable distributions in order to determine individual elemental fractions of the composition. When including observables from the surface detector, we find a discrepancy in the estimated mass composition between a mixed simulation sample and the Pierre Auger data. Our analysis results from the Pierre Auger data are to a great degree independent on hadronic interaction models. Although they differ at higher primary masses, the different models are more consistent, when combining fractions of oxygen and iron. Compared to previously published results, the systematic uncertainty from hadronic interaction models is roughly four times smaller. Our analysis reports a predominantly heavy composition of UHECR, with more than a 50% fraction of oxygen and iron at low energies. The composition is then becoming heavier with increasing energy, with a fraction of oxygen and iron above 80% at the highest energies. Keywords: astroparticle physics, ultra-high energy cosmic rays, extensive air showers, mass composition, Pierre Auger Observatory, machine learning, multivariate analysis Published in RUNG: 03.04.2019; Views: 6712; Downloads: 196
Full text (17,53 MB) |
44. Studies of the microwave emission of extensive air showers with GIGAS and MIDAS at the Pierre Auger ObservatoryRomain Gaïor, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2017, published scientific conference contribution Keywords: Pierre Auger Observatory, microwave emission of extensive air showers, GIGAS and MIDAS Published in RUNG: 16.02.2018; Views: 4215; Downloads: 174
Full text (5,97 MB) |
45. Recent Results of the Auger Engineering Radio Array (AERA)Ewa M. Holt, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2017, published scientific conference contribution Keywords: Auger Engineering Radio Array (AERA), Pierre Auger Observatory, extensive air showers Published in RUNG: 16.02.2018; Views: 4657; Downloads: 147
Full text (636,40 KB) |
46. The influence of weather effects on the reconstruction of extensive air showers at the Pierre Auger ObservatoryAlan Coleman, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2017, published scientific conference contribution Keywords: Pierre Auger Observatory, weather effects, reconstruction of extensive air showers Published in RUNG: 16.02.2018; Views: 4225; Downloads: 149
Full text (942,34 KB) |
47. Measurements of the depth of maximum muon production and of its fluctuations in extensive air showers above 1.5×10^19 eV at the Pierre Auger ObservatoryManuela Mallamaci, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2017, published scientific conference contribution Keywords: extensive air showers above, depth of maximum muon production, Pierre Auger Observatory Published in RUNG: 16.02.2018; Views: 4108; Downloads: 163
Full text (654,89 KB) |
48. Particle Physics with the Pierre Auger ObservatoryTanguy Pierog, Andrej Filipčič, Samo Stanič, Darko Veberič, Danilo Zavrtanik, Marko Zavrtanik, 2014, published scientific conference contribution Keywords: Pierre Auger Observatory, extensive air showers, hadronic interactions, proton-air inelastic cross-section Published in RUNG: 27.06.2017; Views: 4991; Downloads: 0 This document has many files! More... |
49. Particle physics at the Pierre Auger ObservatoryJan Ebr, Andrej Filipčič, Ahmed Saleh, Samo Stanič, Darko Veberič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2014, published scientific conference contribution Keywords: Pierre Auger Observatory, extensive air showers, hadronic interactions, proton-air cross section Published in RUNG: 20.06.2017; Views: 5557; Downloads: 208
Full text (1,02 MB) |
50. |