Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Recent results from the Pierre Auger Observatory
Serguei Vorobiov, 2022, published scientific conference contribution abstract (invited lecture)

Abstract: Ultra-high-energy cosmic rays (UHECRs) are mostly protons and heavier nuclei arriving on Earth from space and producing particle cascades in the atmosphere, ”extensive air showers”. As of today, the most precise and high-statistics data set of the rare (≤ 1 particle per sq.km per year above 10[sup]19 eV) UHECR events is obtained by the Pierre Auger Observatory, a large area (~3000 sq.km) hybrid detector in Argentina. The Auger Observatory determines the arrival directions and energies of the primary UHECR particles and provides constraints for their masses. In this talk, I will present and discuss the recent results, including the detailed measurements of the cosmic-ray energy spectrum features, the study of the anisotropies in the UHECR arrival directions at large and intermediate angular scales, the multi-messenger searches, and the inferred cosmic-ray mass composition. Finally, the progress of the current upgrade of the Observatory, "AugerPrime" which is aimed at improving the sensitivity to the mass composition of ultra-high-energy cosmic rays, will be presented.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR mass composition, energy spectrum, anisotropies, AugerPrime upgrade
Published in RUNG: 23.12.2022; Views: 451; Downloads: 3
URL Link to full text
This document has many files! More...

2.
3.
4.
5.
6.
Large-Scale Distribution of Arrival Directions of Cosmic Rays Detected at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV
Olivier Deligny, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: The large-scale distribution of arrival directions of high-energy cosmic rays is a key observable in attempts to understanding their origin. The dipole and quadrupole moments are of special interest in revealing potential anisotropies. An unambiguous measurement of these moments as well as of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV has been performed. Thanks to the full-sky coverage, the measurement of the dipole moment reported in this study does not rely on any assumption on the underlying flux of cosmic rays. As well, the resolution on the quadrupole and higher order moments is the best ever obtained. The resulting multipolar expansion of the flux of cosmic rays allows a series of anisotropy searches to be performed, and in particular to report on the first angular power spectrum of cosmic rays. This allows a comprehensive description of the angular distribution of cosmic rays above 10[sup]19 eV.
Keywords: Pierre Auger Observatory, Telescope Array, high-energy cosmic rays, large-scale anisotropies, angular power spectrum
Published in RUNG: 08.03.2016; Views: 3728; Downloads: 184
.pdf Full text (462,61 KB)

Search done in 0.04 sec.
Back to top