Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Sustainable digital preservation of new media art
Narvika Bovcon, Eszter Polónyi, Jaka Železnikar, Aleš Vaupotič, 2023, published scientific conference contribution

Abstract: This paper is about two pilot studies conducted in 2022 that aimed to develop a model for preserving and archiving new media art work in the context of a research project on the sustainable digital preservation of new media art that is being co-hosted by the Museum of Modern Art in Ljubljana. As the works of art selected for the study by Slovenian new media art pioneers Vuk Ćosić (2000) and Srečo Dragan (2005) were technically obsolete or non-functional by the time of the study, the question of how to bring the artworks back into existence and what components of each artwork to include in the collection and preservation process constituted one aspect of our research. But this process of reconstruction also raised questions about how the preservation of media art is reshaping the practice of archiving within an institution whose holdings were, until recently, largely in traditional mediums. An interdisciplinary approach addressed the problem from different points of view, involving the practitioners, experts from art-history, museology, computer science, media theory and intellectual property rights.
Keywords: digital cultural heritage, new media art preservation, new media art archives
Published in RUNG: 28.05.2024; Views: 272; Downloads: 2
.pdf Full text (5,46 MB)
This document has many files! More...

2.
Tidal Disruption Events seen through the eyes of Vera C. Rubin Observatory
Katja Bučar Bricman, 2021, doctoral dissertation

Abstract: Tidal Disruption Events (TDEs) are rare transients, which are considered to be promising tools in probing supermassive black holes (SMBHs) and their environments in quiescent galaxies, accretion physics, and jet formation mechanisms. The majority of $\approx$ 60 detected TDEs has been discovered with large field of view time-domain surveys in the last two decades. Currently, about 10 TDEs are discovered per year, and we expect this number will increase largely once the Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory begins its observations. In this work we demonstrate and explore the capabilities of the LSST to study TDEs. To begin with, we simulate LSST observations of TDEs over $10$ years of survey duration by including realistic SED models from MOSFiT into the simulation framework of the LSST. SEDs are then converted into observed fluxes and light curves are simulated with the LSST observing strategy minion_1016. Simulated observations are used to estimate the number of TDEs the LSST is expected to observe and to assess the possibility of probing the SMBH mass distribution in the Universe with the observed TDE sample. We find that the LSST has a potential of observing ~1000 TDEs per year, the exact number depending on the SMBH mass distribution and the adopted observing strategy. In spite of this large number, we find that probing the SMBH mass distribution with LSST observed TDEs will not be straightforward, especially at the low-mass end. This is largely attributed to the fact that TDEs caused by low-mass black holes ($\le 10^6 M_\odot$) are less luminous and shorter than TDEs by heavier SMBHs ($> 10^6 M_\odot$), and the probability of observationally missing them with LSST is higher. Second, we built a MAF TDE metric for photometric identification of TDEs based on LSST data. We use the metric to evaluate the performance of different proposed survey strategies in identifying TDEs with pre-defined identification requirements. Since TDEs are blue in color for months after peak light, which separates them well from SNe and AGN, we include u-band observations as one of the criteria for a positive identification. We find that the number of identified TDEs strongly depends of the observing strategy and the number of u-band visits to a given field in the sky. Observing strategies with a larger number of u-band observations perform significantly better. For these strategies up to 10% of LSST observed TDEs satisfy the identification requirements.
Keywords: Ground-based ultraviolet, optical and infrared telescopes Astronomical catalogs, atlases, sky surveys, databases, retrieval systems, archives, Black holes, Galactic nuclei (including black holes), circumnuclear matter, and bulges, Infall, accretion, and accretion disks
Published in RUNG: 03.01.2022; Views: 2919; Downloads: 66
.pdf Full text (124,61 MB)

Search done in 0.01 sec.
Back to top