1. |
2. |
3. A European aerosol phenomenology - 9 : light absorption properties of carbonaceous aerosol particles across surface EuropeJordi Rovira, Marjan Savadkoohi, Gang I. Chen, Griša Močnik, Wenche Aas, Lucas Alados-Arboledas, B. Artíñano, Asta Gregorič, Matic Ivančič, Jesús Yus-Díez, 2024, original scientific article Abstract: Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11–20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV–VIS radiation presenting highly variable absorption properties in Europe. Keywords: aerosol absorption, black carbon, brown carbon, climate change, air pollution Published in RUNG: 10.12.2024; Views: 503; Downloads: 6
Full text (4,31 MB) This document has many files! More... |
4. Two-dimensional BC tracer model to distinguish between primary and secondary OC : lecture at The European Aerosol Conference 2024, 25. 8.-30. 8. 2024, Tampere, FinlandMatic Ivančič, Asta Gregorič, Gašper Lavrič, Bálint Alföldy, Irena Ježek, Iasonas Stavroulas, Martin Rigler, 2024, unpublished conference contribution Abstract: In this work, we propose an extension of this method. Using the Aethalometer model (Sandradewi et al., 2008), BC as a tracer for primary emitted aerosols can be successfully divided into two components – BCff related to the usage of fossil fuels and BCbb emitted from biomass burning. Because the OC/BC ratio is expected to be different for fossil fuels and biomass burning, we can similarly introduce the two components of POC – a fossil fuel-related POCff and a biomass-burning-related POCbb. Keywords: BC tracer model, secondary organic carbon, black carbon Published in RUNG: 14.11.2024; Views: 727; Downloads: 4
Link to file This document has many files! More... |
5. Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sourcesValeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, 2024, original scientific article Abstract: Abstract. Black carbon (BC) is a major component of submicron particulate matter (PM), with significant health and climate impacts. Many cities in emerging countries lack comprehensive knowledge about BC emissions and exposure levels. This study investigates BC concentration levels, identifies its emission sources, and characterizes the optical properties of BC at urban background sites of the two largest high-altitude Bolivian cities: La Paz (LP) (3600 m above sea level) and El Alto (EA) (4050 m a.s.l.), where atmospheric oxygen levels and intense radiation may affect BC production. The study relies on concurrent measurements of equivalent black carbon (eBC), elemental carbon (EC), and refractory black carbon (rBC) and their comparison with analogous data collected at the nearby Chacaltaya Global Atmosphere Watch Station (5240 m a.s.l). The performance of two independent source apportionment techniques was compared: a bilinear model and a least-squares multilinear regression (MLR). Maximum eBC concentrations were observed during the local dry season (LP: eBC = 1.5 ± 1.6 µg m−3; EA: 1.9±2.0 µg m−3). While eBC concentrations are lower at the mountain station, daily transport from urban areas is evident. Average mass absorption cross sections of 6.6–8.2 m2 g−1 were found in the urban area at 637 nm. Both source apportionment methods exhibited a reasonable level of agreement in the contribution of biomass burning (BB) to absorption. The MLR method allowed the estimation of the contribution and the source-specific optical properties for multiple sources, including open waste burning. Keywords: black carbon, aerosol absorption, source apportionment, mass absorption cross-section Published in RUNG: 29.10.2024; Views: 746; Downloads: 1
Full text (3,35 MB) This document has many files! More... |
6. Changes in black carbon emissions over Europe due to COVID-19 lockdownsNikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Jesús Yus-Díez, 2021, original scientific article Abstract: Abstract. Following the emergence of the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China)
and its spread to the rest of the world, the World Health Organization
declared a global pandemic in March 2020. Without effective treatment in the
initial pandemic phase, social distancing and mandatory quarantines were
introduced as the only available preventative measure. In contrast to the
detrimental societal impacts, air quality improved in all countries in which
strict lockdowns were applied, due to lower pollutant emissions. Here we
investigate the effects of the COVID-19 lockdowns in Europe on ambient black
carbon (BC), which affects climate and damages health, using in situ
observations from 17 European stations in a Bayesian inversion framework. BC
emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany,
34 % in Spain, 22 % in France) during lockdowns compared to the same
period in the previous 5 years, which is partially attributed to COVID-19
measures. BC temporal variation in the countries enduring the most drastic
restrictions showed the most distinct lockdown impacts. Increased particle
light absorption in the beginning of the lockdown, confirmed by assimilated
satellite and remote sensing data, suggests residential combustion was the
dominant BC source. Accordingly, in central and Eastern Europe, which
experienced lower than average temperatures, BC was elevated compared to the
previous 5 years. Nevertheless, an average decrease of 11 % was seen
for the whole of Europe compared to the start of the lockdown period, with
the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain
(11 %) and Italy (8 %). Such a decrease was not seen in the previous
years, which also confirms the impact of COVID-19 on the European emissions
of BC. Keywords: black carbon, covid-19, emissions, Europe Published in RUNG: 13.05.2024; Views: 2288; Downloads: 6
Full text (11,03 MB) This document has many files! More... |
7. Applicability of benchtop multi-wavelength polar photometers to off-line measurements of the Multi-Angle Absorption Photometer (MAAP) samplesSara Valentini, Vera Bernardoni, Ezio Bolzacchini, Davide Ciniglia, Luca Ferrero, Alice Corina Forello, Dario Massabò, Marco Pandolfi, Paolo Prati, Jesús Yus-Díez, 2021, original scientific article Keywords: aerosol absorption coefficient, equivalent black carbon, MAAP, polar photometer, multi-wavelength Published in RUNG: 13.05.2024; Views: 1282; Downloads: 2
Link to file This document has many files! More... |
8. Measurement of atmospheric black carbon in some South Mediterranean cities : seasonal variations and source apportionmentHamza Merabet, Rabah Kerbachi, Nikolaos Mihalopoulos, Iasonas Stavroulas, Maria Kanakidou, Noureddine Yassaa, 2019, original scientific article Abstract: This study aims to investigate, for the first time in Algeria, the atmospheric black carbon (BC) concentrations over one year measured at the Scientific Observatory of Algiers and to compare their concentration levels with other Mediterranean cities (i.e., Athens and Crete). The diurnal cycles as well as seasonal variations of BC concentrations were evaluated and attributed to their emission sources (fossil fuel: BCff and wood burning: BCwb). The annual mean concentrations of BC, BCff and BCwb were 1.113±2.030, 1.064±2.002 and 0.049±0.262 µgm-3, respectively. The highest seasonal mean concentrations were recorded in summer and autumn with 1.283±1.346 and 1.209±1.149 µgm-3 for BC and 1.217±1.431 and 1.177±1.151 µgm-3 for BCff, respectively. However, the lowest mean concentrations were recorded in winter and spring with 1.023±1.189 and 0.966±0.964 µgm-3 for BC and 0.933±1.177 and 0.956±0.874 µgm-3 for BCff, respectively. For BCwb, the highest mean concentrations were reached in winter and summer with 0.090±0.055 and 0.066±0.050 µgm-3, respectively, very likely due to the forest fires and long-range transport of air pollution from Europe. The lowest mean concentrations of BCwb were recorded in autumn and spring with 0.032±0.033 and 0.010±0.021 µgm-3, respectively. Seggregating BC levels into eight wind sectors, showed that the prevailing BC pollution with concentrations reaching up to 5.000 µgm-3 originated from the North-West wind sector. A source apportionment of BC for the wet and dry period was also perfomed followed by a back trajectory cluster analysis for long-range transport. Keywords: aerosol, black carbon, atmospheric pollution, source apportionment, seasonal variation, year modulation Published in RUNG: 10.05.2024; Views: 1166; Downloads: 8
Full text (5,67 MB) This document has many files! More... |
9. Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, GreeceEleni Liakakou, Iasonas Stavroulas, Dimitris G. Kaskaoutis, Georgios Grivas, D. Paraskevopoulou, Umesh Chandra Dumka, M. Tsagkaraki, Aikaterini Bougiatioti, K. Oikonomou, J. Sciare, 2020, original scientific article Abstract: This study aims to delineate the characteristics of Black Carbon (BC) in the atmosphere over Athens, Greece, using 4-year (May 2015–April 2019) Aethalometer (AE-33) measurements. The average BC concentration is 1.9 ± 2.5 μg m−3 (ranging from 0.1 to 32.7 μg m−3; hourly values), with a well-defined seasonality from 1.3 ± 1.1 μg m−3 in summer to 3.0 ± 4.0 μg m−3 in winter. Pronounced morning and evening/night peaks are found in the BC concentrations in winter, while during the rest of the seasons, this diurnal cycle appears to flatten out, with the exception of the morning traffic peak. On an annual basis, the biomass-burning fraction (BB%) of BC accounts for 22 ± 12%, while the fossil-fuel combustion (BCff) component (traffic emissions and domestic heating) dominates during summer (83%) and in the morning hours. BCwb exhibits higher contribution in winter (32%), especially during the night hours (39%). BC levels are effectively reduced by precipitation, while they significantly build-up for wind speeds <3 m s−1 and mixing-layer height (MLH) < 500 m. Normalizing the BC diurnal course by the MLH variations on a seasonal basis reveals that the residential wood-burning emissions are mostly responsible for the large BC increase during winter nights, whereas the low BC levels during daytime in the warm season are mainly attributed to dilution into a deeper MLH. BCwb is highly correlated with other BB tracers during winter nights (e.g. levoglucosan, non-sea-salt-K+, m/z 60 fragment), as well as with the fine fraction (PM2.5) OC and EC. The Delta-C, which represents the spectral dependence of BC as the absorption difference between 370 and 880 nm, is analyzed for the first time in Athens. It exhibits a pronounced seasonality with maximum values in winter night-time, and it appears as a valid qualitative marker for wood combustion. Keywords: black carbon, wood burning, source apportionment, mixing layer, biomass burning tracers, Athens Published in RUNG: 10.05.2024; Views: 1271; Downloads: 2
Link to file |
10. Online chemical characterization and sources of submicron aerosol in the major mediterranean port city of Piraeus, GreeceIasonas Stavroulas, Georgios Grivas, Eleni Liakakou, Panayiotis Kalkavouras, Aikaterini Bougiatioti, Dimitris G. Kaskaoutis, Maria Lianou, Kyriaki Papoutsidaki, M. Tsagkaraki, Evangelos Gerasopoulos, Pavlos Zarmpas, Nikolaos Mihalopoulos, 2021, original scientific article Abstract: Port cities are affected by a wide array of emissions, including those from the shipping, road transport, and residential sectors; therefore, the characterization and apportionment of such sources in a high temporal resolution is crucial. This study presents measurements of fine aerosol chemical composition in Piraeus, one of the largest European ports, during two monthly periods (winter vs. summer) in 2018–2019, using online instrumentation (Aerosol Chemical Speciation Monitor—ACSM, 7-λ aethalometer). PMF source apportionment was performed on the ACSM mass spectra to quantify organic aerosol (OA) components, while equivalent black carbon (BC) was decomposed to its fossil fuel combustion and biomass burning (BB) fractions. The combined traffic, shipping and, especially, residential emissions led to considerably elevated submicron aerosol levels (22.8 μg m−3) in winter, which frequently became episodic late at night under stagnant conditions. Carbonaceous compounds comprised the major portion of this submicron aerosol in winter, with mean OA and BC contributions of 61% (13.9 μg m−3) and 16% (3.7 μg m−3), respectively. The contribution of BB to BC concentrations was considerable and spatially uniform. OA related to BB emissions (fresh and processed) and hydrocarbon-like OA (from vehicular traffic and port-related fossil fuel emissions including shipping) accounted for 37% and 30% of OA, respectively. In summer, the average PM1 concentration was significantly lower (14.8 μg m−3) and less variable, especially for the components associated with secondary aerosols (such as OA and sulfate). The effect of the port sector was evident in summer and maintained BC concentrations at high levels (2.8 μg m−3), despite the absence of BB and improved atmospheric dispersion. Oxygenated components yielded over 70% of OA in summer, with the more oxidized secondary component of regional origin being dominant (41%) despite the intensity of local sources, in the Piraeus environment. In general, with respect to local sources that can be the target of mitigation policies, this work highlights the importance of port-related activities but also reveals the extensive wintertime impact of residential wood burning. While a separation of the BB source is feasible, more research is needed on how to disentangle the short-term effects of different fossil-fuel combustion sources. Keywords: Athens, harbor, shipping emissions, PM1, chemical speciation, organic aerosol, black carbon, ACSM, aethalometer, PMF Published in RUNG: 10.05.2024; Views: 1308; Downloads: 6
Link to file This document has many files! More... |