Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme


1 - 2 / 2
First pagePrevious page1Next pageLast page
Boron‑rich boron carbide from soot
Sankaranarayana Iyer Sankararaman, H. V. Saritha Devi, Mohanachandran Nair Sindhu Swapna, 2020, original scientific article

Abstract: Boron carbide is a promising super-hard semiconducting material for refractory applications ranging from the nuclear industry to spacecraft. The present work is the frst report of not only turning futile soot, containing carbon allotropes in varying composition, into boron-rich boron carbide (BC), but also developing it by a low-cost, low-temperature, and green synthesis method. The BC synthesised from gingelly oil soot is subjected to structural, morphological, and optical characterisations. The feld emission scanning electron microscope shows beautiful fower-like morphology, and the thermogravimetric analysis reveals the high-temperature stability of the sample synthesised. The Tauc plot of the sample indicates a 2.38 eV direct bandgap. The formation of BC and boron-rich carbide evidenced by X-ray difraction studies is confrmed through Raman and Fourier transform infrared spectroscopic signatures of B–C and C–B–C bonds. The fuorescence, power spectrum, and CIE analyses carried out suggest the blue light emission for excitation at 350 nm
Found in: ključnih besedah
Summary of found: ...of not only turning futile soot, containing carbon allotropes in varying composition, into boron-rich boron...
Keywords: boron carbide, soot, carbon nanoparticle, refractory, allotropes, green synthesis
Published: 30.06.2022; Views: 359; Downloads: 0
.pdf Fulltext (1,11 MB)

The efflorescent carbon allotropes: Fractality preserved blooming through alkali treatment and exfoliation
Swapna Mohanachandran Nair Sindhu, Sankararaman S, 2020, original scientific article

Abstract: The work reported in the paper elucidates morphological modification induced nanoart and surface area enhancement of graphite, graphene, and soot containing carbon allotropes through ultrasonication and alkali-treatment. The field emission scanning electron microscopic (FESEM) analysis of the samples before and after exfoliation reveals the formation of brilliant flower-like structures from spindle-like basic units due to Ostwald ripening. The x-ray diffraction analysis of the samples gives information about structural composition. The fractal analysis of the FESEM images indicates a multifractal structure with the dimensions—box-counting dimension D0 (1.72), information dimension D1 (1.66), and correlation dimension D2 (1.63)—preserved upon exfoliation. The process of ultra-sonication assisted liquid phase exfoliation resembles blooming as if the carbon allotropes are efflorescent.
Found in: ključnih besedah
Keywords: carbon allotropes, fractal dimension, soot, fractality, alkali treatment, exfoliation
Published: 04.07.2022; Views: 317; Downloads: 0
.pdf Fulltext (8,02 MB)

Search done in 0 sec.
Back to top