1. The distribution of ultrahigh-energy cosmic rays along the supergalactic plane measured at the Pierre Auger ObservatoryA. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article Abstract: Ultrahigh-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energetic cosmic rays from the direction of the supergalactic plane region using events with energies above 20 EeV recorded with the surface detector array of the Pierre Auger Observatory up to 2022 December 31, with a total exposure of 135,000 sq. km sr yr. The strongest indication for an excess that we find, with a posttrial significance of 3.1σ, is in the Centaurus region, as in our previous reports, and it extends down to lower energies than previously studied. We do not find any strong hints of excesses from any other region of the supergalactic plane at the same angular scale. In particular, our results do not confirm the reports by the Telescope Array Collaboration of excesses from two regions in the Northern Hemisphere at the edge of the field of view of the Pierre Auger Observatory. With a comparable integrated exposure over these regions, our results there are in good agreement with the expectations from an isotropic distribution. Keywords: ultra-high-energy cosmic rays, UHECR propagation, large-scale structure, UHECR energy losses, UHECR deflections, supergalactic plane region, Centaurus region, Pierre Auger Observatory, Auger surface detector array Published in RUNG: 06.05.2025; Views: 511; Downloads: 2
Full text (2,20 MB) This document has many files! More... |
2. Amplifying UHECR arrival direction information using mass estimators at the Pierre Auger ObservatoryLorenzo Apollonio, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: The origin of Ultra-High-Energy Cosmic Rays (UHECRs) is one of the biggest mysteries in modern astrophysics. Since UHECRs are deflected by Galactic and extragalactic magnetic fields, their arrival directions do not point to their sources. Previous analyses conducted on the arrival directions of high-energy events (E ≥ 32 EeV) recorded by the Surface Detector of the Pierre Auger Observatory have not shown significant anisotropies. The largest excess found in the first 19 years of data - at the 4.0 sigma level - is in the region around Centaurus A, and it is also the driving force of a correlation of UHECR arrival directions with a catalog of Starburst Galaxies, which is at the 3.8 sigma level. Since UHECRs are mostly nuclei, the lightest ones (least charged) are also the least deflected. While the mass of the events can be estimated better using the Fluorescence Detector of the Pierre Auger Observatory, the Surface Detector provides the necessary statistics needed for astrophysical studies. The introduction of novel mass-estimation techniques, such as machine learning models and an algorithm based on air-shower universality, will help identify high-rigidity events in the Surface Detector data of the Pierre Auger Observatory. With this work, we present how event-per-event mass estimators can help enhance the sensitivity in the search for anisotropies in the arrival directions of UHECRs at small and intermediate angular scales using simulations. Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR propagation, UHECR arrival directions, UHECR mass composition, Centaurus A radio galaxy, starburst galaxies, air-shower universality Published in RUNG: 30.04.2025; Views: 543; Downloads: 6
Full text (2,03 MB) This document has many files! More... |
3. Mass composition of ultrahigh energy cosmic rays from distribution of their arrival directions with the Telescope ArrayR. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, Jon Paul Lundquist, 2024, original scientific article Abstract: We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array (TA) experiment with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale structure (LSS) of the Universe. As we report in the companion Letter, the TA data show large deflections with respect to the LSS which can be explained, assuming small extragalactic magnetic fields (EGMF), by an intermediate composition changing to a heavy one (iron) in the highest energy bin. Here we show that these results are robust to uncertainties in UHECR injection spectra, the energy scale of the experiment and galactic magnetic fields. The assumption of weak EGMF, however, strongly affects this interpretation at all but the highest energies E > 100 EeV, where the remarkable isotropy of the data implies a heavy injected composition even in the case of strong EGMF. This result also holds if UHECR sources are as rare as 2 × 10[sup]−5 Mpc[sup]−3, that is the conservative lower limit for the source number density. Keywords: ultrahigh energy cosmic rays, large-scale structure, extragalactic magnetic fields, UHECR propagation, Telescope Array, UHECR mass composition, UHECR arrival directions Published in RUNG: 23.04.2025; Views: 396; Downloads: 2
Link to file This document has many files! More... |
4. Isotropy of Cosmic Rays beyond 10[sup]20 eV Favors Their Heavy Mass CompositionR. U. Abbasi, Jon Paul Lundquist, 2024, original scientific article Abstract: We report an estimation of the injected mass composition of ultrahigh energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extragalactic magnetic fields (EGMFs), the results are consistent with a relatively heavy injected composition at E ∼ 10 EeV that becomes lighter up to E ∼ 100 EeV, while the composition at E > 100 EeV is very heavy. The latter is true even in the presence of highest experimentally allowed extragalactic magnetic fields, while the composition at lower energies can be light if a strong EGMF is present. The effect of the uncertainty in the galactic magnetic field on these results is subdominant. Keywords: ultrahigh energy cosmic rays (UHECRs), Large Scale Structure, extragalactic magnetic fields, UHECR propagation, Telescope Array surface detector, UHECR mass composition, UHECR arrival directions Published in RUNG: 23.04.2025; Views: 415; Downloads: 2
Link to file This document has many files! More... |
5. Astrophysical models to interpret the Pierre Auger Observatory dataJuan Manuel González, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: The Pierre Auger Observatory has measured the spectrum of ultra-high-energy cosmic rays with unprecedented precision, as well as the distribution of the depths of the maximum of the shower development in the atmosphere, which provide a reliable estimator of the mass composition. The measurements above 10[sup]17.8 eV can be interpreted assuming two populations of uniformly distributed sources, one with a soft spectrum dominating the flux below few EeV, and another one with a very hard spectrum dominating above that energy. When considering the presence of intense extragalactic magnetic fields between our Galaxy and the closest sources and a high-energy population with low spatial density, a magnetic horizon appears, suppressing the cosmic ray's flux at low-energies, which could explain the very hard spectrum observed at Earth. The distribution of arrival directions, which at energies above 32 EeV shows indications of a correlation with a population of starburst galaxies or the radio galaxy Centaurus A (Cen A), are also important to constrain the sources. It is shown that adding a fractional contribution from these sources of about 20% on top of an homogeneous background leads to an improvement of the model likelihood. Keywords: ultra-high-energy cosmic rays, UHECR energy spectrum, UHECR mass composition, UHECR anisotropies, UHECR propagation, UHECR data interpretation, extragalactic magnetic fields, starburst galaxies, Centaurus A, Pierre Auger Observatory Published in RUNG: 24.03.2025; Views: 619; Downloads: 7
Full text (790,55 KB) This document has many files! More... |
6. Combined fit of spectrum and composition for FR0 radio-galaxy-emitted ultra–high energy cosmic rays with resulting secondary photons and neutrinosJon Paul Lundquist, Serguei Vorobiov, Lukas Merten, Anita Reimer, Margot Boughelilba, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2025, original scientific article Abstract: This study comprehensively investigates the gamma-ray dim population of Fanaroff–Riley
Type 0 (FR0) radio galaxies as potentially significant sources of ultra–high energy cosmic rays
(UHECRs, E > 10[sup]18 eV) detected on Earth. While individual FR0 luminosities are relatively
low compared to the more powerful Fanaroff–Riley Type 1 and Type 2 galaxies, FR0s are
substantially more prevalent in the local universe, outnumbering the more energetic galaxies
by a factor of ∼5 within a redshift of z ≤ 0.05. Employing CRPropa3 simulations, we estimate
the mass composition and energy spectra of UHECRs originating from FR0 galaxies for energies
above 10[sup]18.6 eV. This estimation fits data from the Pierre Auger Observatory (Auger)
using three extensive air shower models; both constant and energy-dependent observed
elemental fractions are considered. The simulation integrates an approximately isotropic
distribution of FR0 galaxies, extrapolated from observed characteristics, with UHECR
propagation in the intergalactic medium, incorporating various plausible configurations of
extragalactic magnetic fields, both random and structured. We then compare the resulting
emission spectral indices, rigidity cutoffs, and elemental fractions with recent Auger results.
In total, 25 combined energy-spectrum and mass-composition fits are considered. Beyond
the cosmic-ray fluxes emitted by FR0 galaxies, this study predicts the secondary photon and
neutrino fluxes from UHECR interactions with intergalactic cosmic photon backgrounds.
The multimessenger approach, encompassing observational data and theoretical models,
helps elucidate the contribution of low-luminosity FR0 radio galaxies to the total cosmic-ray
energy density. Keywords: ultra-high-energy cosmic rays, UHECRs, UHECR energy spectrum, Pierre Auger Observatory, UHECR mass composition, UHECR sources, extragalactic magnetic fields, UHECR propagation, CRPropa tool Published in RUNG: 06.01.2025; Views: 892; Downloads: 10
Full text (4,14 MB) This document has many files! More... |
7. Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition dataA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article Abstract: The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff.
Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space.
We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie
of order Brms ≃ (50–100) nG (20 Mpc/ds)( 100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case,
the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E-2.
An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV. Keywords: ultra high energy cosmic rays, UHECR propagation, magnetic horizon effect, Pierre Auger Observatory Published in RUNG: 24.09.2024; Views: 1172; Downloads: 3
Full text (3,65 MB) This document has many files! More... |
8. Investigation of multi-messenger properties of FR0 radio galaxy emitted ultra-high energy cosmic raysJon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Albert Reimer, Paolo Da Vela, F. Tavecchio, G. Bonnoli, C. Righi, 2023, published scientific conference contribution Abstract: Low luminosity Fanaroff-Riley type 0 (FR0) radio galaxies are amongst potential contributors to the observed flux of ultra-high energy cosmic rays (UHECRs). Due to FR0s’ much higher abundance in the local universe than more powerful radio galaxies (e.g., about five times more ubiquitous at redshifts z≤0.05 than FR1s), they could provide a substantial fraction of the total UHECR energy density.
In the presented work, we determine the mass composition and energy spectrum of UHECRs emitted by FR0 sources by fitting simulation results from the CRPropa3 framework to the recently published Pierre Auger Observatory data. The resulting emission spectral characteristics (spectral indices, rigidity cutoffs) and elemental group fractions are compared to the Auger results. The FR0 simulations include the approximately isotropic distribution of FR0s extrapolated from the measured FR0 galaxy properties and various extragalactic magnetic field configurations, including random and large-scale structured fields. We predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. The presented results allow for probing the properties of the FR0 radio galaxies as cosmic-ray sources using observational high-energy multi-messenger data. Keywords: ultra-high energy cosmic rays, UHECRs, Pierre Auger Observatory, UHECR propagation, UHECR interactions, UHECR energy spectrum, UHECR mass composition, UHECR sources, Fanaroff-Riley (FR) radio galaxies, FR0 galaxies Published in RUNG: 24.01.2024; Views: 2550; Downloads: 52
Full text (573,28 KB) This document has many files! More... |
9. Searching for Anisotropy in Electron+Positron Cosmic Rays with CALETHolger Motz, Yoichi Asaoka, Shoji Torii, Saptashwa Bhattacharyya, 2017, original scientific article Abstract: The ISS-based Calorimetric Electron Telescope (CALET) is directly measuring the energy spectrum and direction distribution of electron+positron cosmic-rays up to 20 TeV. A main goal of CALET is to identify a signature of a nearby supernova remnant (SNR) in electron+positron cosmic-rays.
The Vela SNR has the highest potential to cause a spectral feature in the TeV region and/or a detectable anisotropy. Using the numerical cosmic-ray propagation code DRAGON, the spectrum and expected anisotropy of the Vela SNR together with background from more distant SNR was calculated depending on injection and propagation conditions. The results of these calculations were used to simulate CALET event sky-maps on which several analysis methods were employed to estimate the CALET sensitivity.
Assuming that there is no anisotropy, the expected limits on the dipole amplitude from an all-sky search were calculated as a function of the selected energy range and the shape of the predicted spectra.
However for the detection of a dipole anisotropy, the direction towards Vela is predetermined, and sensitivity is strongly boosted by a directed search. It is shown that with this method, CALET has a significant probability to identify an anisotropy signature from Vela. As it may disturb the Vela signature, the contribution to the local cosmic-ray anisotropy from several other nearby SNR and pulsars, as well as from the general source distribution in the galaxy was studied. It was found that Vela is expected to dominate and have a detectable signature, though there is some influence from other sources on direction and strength of the anisotropy. Furthermore, the implications of detecting an dipole anisotropy directed towards Vela for the local propagation parameters, such as the diffusion coefficient, are explained. Keywords: cosmic-rays, CALET, cosmic-ray propagation Published in RUNG: 05.10.2023; Views: 2063; Downloads: 7
Full text (7,60 MB) This document has many files! More... |
10. The UHECR-FR0 radio galaxy connection : a multi-messenger study of energy spectra/composition emission and intergalactic magnetic field propagationJon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2023, published scientific conference contribution Abstract: This study investigates low luminosity Fanaroff-Riley Type 0 (FR0) radio galaxies as a potentially
significant source of ultra-high energy cosmic rays (UHECRs). Due to their much higher prevalence
in the local universe compared to more powerful radio galaxies (about five times more than
FR-1s), FR0s may provide a substantial fraction of the total UHECR energy density. To determine
the nucleon composition and energy spectrum of UHECRs emitted by FR0 sources, simulation
results from CRPropa3 are fit to Pierre Auger Observatory data. The resulting emission spectral
indices, rigidity cutoffs, and nucleon fractions are compared to recent Auger results. The FR0 simulations
include the approximately isotropic distribution of FR0 galaxies and various intergalactic
magnetic field configurations (including random and structured fields) and predict the fluxes of
secondary photons and neutrinos produced during UHECR propagation through cosmic photon
backgrounds. This comprehensive simulation allows for investigating the properties of the FR0
sources using observational multi-messenger data. Keywords: ultra-high energy cosmic rays, UHECR propagation, CRPropa, active galactic nuclei, jetted AGN, FR0 radio galaxies, Pierre Auger Observatory, UHECR energy spectrum Published in RUNG: 24.08.2023; Views: 2832; Downloads: 5
Full text (1,12 MB) This document has many files! More... |