Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


221 - 230 / 306
First pagePrevious page19202122232425262728Next pageLast page
221.
TA Anisotropy Summary
K. Kawata, Jon Paul Lundquist, 2019, published scientific conference contribution

Abstract: The Telescope Array (TA) is the largest ultra-high-energy cosmic-ray (UHECR) detector in the northern hemisphere. It consists of an array of 507 surface detectors (SD) covering a total 700 km^2 and three fluorescence detector stations overlooking the SD array. In this proceedings, we summarize recent results on the search for directional anisotropy of UHECRs using the latest dataset collected by the TA SD array. We obtained hints of the anisotropy of the UHECRs in the northern sky from the various analyses.
Keywords: cosmic radiation, UHE detector, fluorescence detector, surface, Telescope Array Experiment, anisotropy, experimental results
Published in RUNG: 28.04.2020; Views: 2981; Downloads: 78
.pdf Full text (1,88 MB)

222.
Covering the celestial sphere at ultra-high energies: Full-sky cosmic-ray maps beyond the ankle and the flux suppression
J. Biteau, Jon Paul Lundquist, 2019, published scientific conference contribution

Abstract: Despite deflections by Galactic and extragalactic magnetic fields, the distribution of ultra-high energy cosmic rays (UHECRs) over the celestial sphere remains a most promising observable for the identification of their sources. Thanks to a large number of detected events over the past years, a large-scale anisotropy at energies above 8 EeV has been identified, and there are also indications from the Telescope Array and Pierre Auger Collaborations of deviations from isotropy at intermediate angular scales (about 20 degrees) at the highest energies. In this contribution, we map the flux of UHECRs over the full sky at energies beyond each of two major features in the UHECR spectrum – the ankle and the flux suppression, and we derive limits for anisotropy on different angular scales in the two energy regimes. In particular, full-sky coverage enables constraints on low-order multipole moments without assumptions about the strength of higher-order multipoles. Following previous efforts from the two Collaborations, we build full-sky maps accounting for the relative exposure of the arrays and differences in the energy normalizations. The procedure relies on cross-calibrating the UHECR fluxes reconstructed in the declination band around the celestial equator covered by both observatories. We present full-sky maps at energies above ~10 EeV and ~50 EeV, using the largest datasets shared across UHECR collaborations to date. We report on anisotropy searches exploiting full-sky coverage and discuss possible constraints on the distribution of UHECR sources.
Keywords: UHECR, cosmic rays, anisotropy, Telescope Array, Pierre Auger Observatory
Published in RUNG: 28.04.2020; Views: 2616; Downloads: 82
.pdf Full text (4,92 MB)

223.
Supergalactic Structure of Multiplets with the Telescope Array Surface Detector
Jon Paul Lundquist, P. Sokolsky, 2019, published scientific conference contribution

Abstract: Evidence of supergalactic structure of multiplets has been found for ultra-high energy cosmic rays (UHECR) with energies above 10^19 eV using 7 years of data from the Telescope Array (TA) surface detector. The tested hypothesis is that UHECR sources, and intervening magnetic fields, may be correlated with the supergalactic plane, as it is a fit to the average matter density within the GZK horizon. This structure is measured by the average behavior of the strength of intermediate-scale correlations between event energy and position (multiplets). These multiplets are measured in wedge-like shapes on the spherical surface of the fieldof-view to account for uniform and random magnetic fields. The evident structure found is consistent with toy-model simulations of a supergalactic magnetic sheet and the previously published Hot/Coldspot results of TA. The post-trial probability of this feature appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be ~4.5σ.
Keywords: UHECR, cosmic rays, energy spectrum, anisotropy, large-scale structure, magnetic deflection
Published in RUNG: 28.04.2020; Views: 2833; Downloads: 150
.pdf Full text (1,38 MB)

224.
Improving Particle Identification with Resistant Track Finding for the ISS-CREAM Calorimeter
Jon Paul Lundquist, published scientific conference contribution abstract

Abstract: Moving from Antarctic balloons to the International Space Station the Cosmic Ray Energetics And Mass detector (ISS-CREAM) has begun taking the highest energy direct measurements of cosmic ray (CR) particles ever attempted. ISS-CREAM will investigate how the energy distributions evolve, for protons all the way to iron nuclei, and will provide important information for models of galactic sources and CR propagation. The CR particle identification can be significantly improved by tracking particle-detector interactions from the calorimeter (for energy measurement) back to the Silicon Charge Detector for atomic number determination. A track finding algorithm resistant to such issues as particle multiplicity, backscatter, and noise is outlined.
Keywords: cosmic rays, high energy, track finding
Published in RUNG: 28.04.2020; Views: 2930; Downloads: 0
This document has many files! More...

225.
Supergalactic Structure of Energy-Angle Correlations
Jon Paul Lundquist, P. Sokolsky, 2020, published scientific conference contribution

Abstract: Evidence for the supergalactic structure of multiplets (energy-angle correlations) has previously been shown using ultra-high energy cosmic ray (UHECR) data from Telescope Array (TA) with energies above 10^19 eV. The supergalactic deflection hypothesis (that UHECR sources and intervening magnetic fields are correlated) is measured by the all-sky behavior of the strength of intermediate-scale correlations. The multiplets are measured in spherical surface wedge bins of the field-of-view to account for uniform and random magnetic fields. The structure found is consistent with the previously published energy spectrum anisotropy results of TA and toy-model simulations of a supergalactic magnetic sheet. The 7 year data post-trial significance of this feature appearing by chance, on an isotropic sky, was found by Monte Carlo simulation to be ∼4σ. The analysis has now been applied to 10 years of data.
Keywords: Cosmic rays, UHECR, energy spectrum, magnetic deflection, large-scale structure, supergalactic, multiplets
Published in RUNG: 27.04.2020; Views: 2715; Downloads: 85
.pdf Full text (1,66 MB)

226.
Indications of Proton-Dominated Cosmic-Ray Composition above 1.6 EeV
R.U. Abbasi, Jon Paul Lundquist, 2010, original scientific article

Abstract: We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (Xmax), for air shower events collected by the High-Resolution Fly’s Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d⟨Xmax⟩/d[log(E)] of 47.9 ± 6.0 (stat) ± 3.2 (syst) g/cm^2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4×10^18 eV.
Keywords: Cosmic rays, Energy spectrum, Telescope Array, Hybrid, Ultra high energy
Published in RUNG: 27.04.2020; Views: 2746; Downloads: 0
This document has many files! More...

227.
The hybrid energy spectrum of Telescope Array’s Middle Drum Detector and surface array
R.U. Abbasi, Jon Paul Lundquist, 2015, original scientific article

Abstract: The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.
Keywords: Cosmic rays, Energy spectrum, Telescope Array, Hybrid, Ultra high energy
Published in RUNG: 27.04.2020; Views: 2700; Downloads: 0
This document has many files! More...

228.
229.
First upper limits on the radar cross section of cosmic-ray induced extensive air showers
R.U. Abbasi, Jon Paul Lundquist, 2017, original scientific article

Abstract: TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 µs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/µs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector.
Keywords: Cosmic ray, Radar, Digital signal processing, Radar cross-section
Published in RUNG: 27.04.2020; Views: 2664; Downloads: 0
This document has many files! More...

230.
The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years
R.U. Abbasi, Jon Paul Lundquist, 2016, original scientific article

Abstract: The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 10^17.2eV measured by the fluorescence detectors and a comparison with previously published results.
Keywords: Cosmic rays, Ultra-high energy, Fluorescence detector, Energy spectrum, Ankle, GZK cutoff
Published in RUNG: 27.04.2020; Views: 2779; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top