1. Downward Terrestrial Gamma-ray Flashes at the Pierre Auger Observatory?R. Colalillo, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: At the Pierre Auger Observatory, designed primarily to study ultra-high-energy cosmic rays, phenomena related to atmospheric electricity are also observed. Particularly, events have been detected with the surface detector, characterized by long-lasting signals (tens of microseconds) and event footprints much larger (up to 200 km2) than those produced by the highest energy cosmic rays. Moreover, some of them appear to be accompanied by smaller events occurring in the same area within about 1 ms and probably produced by the same phenomenon. A previously reported correlation with the World Wide Lightning Location Network, as well as the observation of very low-altitude clouds, confirm that such events are related to thunderstorms. An ad-hoc reconstruction points to high-energy particles being produced very close to the ground, suggesting that they originate from electrons accelerated to relativistic energies in strong electric fields inside low clouds, as is the case for terrestrial gamma-ray flashes above thunderstorms.
A clear explanation of the observed phenomenon is hindered by two facts. One is that the rate of such events, detected serendipitously, is very small (less than 2 events/year) and decreases further after optimization of the surface detector trigger for low-energy shower-events. The second is that most events show a puzzling lack of signals in the central part of the footprint. We have studied in detail both effects and will present such studies here. We developed a strategy for a dedicated trigger to enhance the detection efficiency for these events associated with atmospheric-electricity events. Keywords: Pierre Auger Observatory, surface detection, ultra-high energy, cosmic rays, photons, electrons, gamma-ray flashes, lightning Published in RUNG: 29.09.2023; Views: 1509; Downloads: 7 Full text (2,42 MB) This document has many files! More... |
2. Results from the Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experimentE.S. Seo, Jon Paul Lundquist, 2022, published scientific conference contribution Abstract: The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment took high-energy cosmic ray data for 539 days after its successful installation on the ISS in August 2017. The ISS-CREAM instrument is configured with complementary particle detectors capable of measuring elemental spectra for Z = 1 - 26 nuclei in the energy range 10^12 – 10^15 eV; as well as electrons at multi-TeV energies. The goal is to understand cosmic ray origin, acceleration, and propagation by extending direct measurements of cosmic rays to energies that overlap the energy region of air showers measurements. The four layers of finely segmented Silicon Charge Detectors provide precise charge measurements. They have been designed to minimize hits of accompanying backscattered particles in the same segment as the incident cosmic ray particle to avoid charge misidentification. The sampling tungsten/scintillating-fiber calorimeter, which is identical to the calorimeter for prior CREAM balloon flights, provides energy measurements. In addition, scintillator-based Top and Bottom Counting Detectors distinguish electrons from nuclei. Our analysis indicates that the data extend well above 100 TeV. Recent results from the ongoing analysis are presented. Keywords: ISS-CREAM, silicon charge detector, calorimeter, direct detection, cosmic rays, electrons, energy spectrum, composition Published in RUNG: 26.09.2023; Views: 1529; Downloads: 7 Full text (901,39 KB) This document has many files! More... |
3. Advantages and disadvantages of experiments with ultrashort two-color pulsesMatija Stupar, 2020, doctoral dissertation Abstract: Advances in the development of lasers have led to a new class of radiation sources generating coherent, tunable, ultrashort light pulses in the spectral region ranging from infrared to soft X-rays. This includes high-order harmonics generation in gas (HHG), on which relies the CITIUS facility at University of Nova Gorica (Slovenia), and free-electron lasers (FELs), such as the facility FERMI at Elettra-Sincrotrone Trieste (Italy). The distinctive structure of HHG and FEL radiation paved the way to time-resolved experiments, which are performed to investigate events occurring on a short, or very short, temporal scale, from picoseconds to femtoseconds.
This work focuses on the advantages and disadvantages of some experimental techniques based on using these novel light sources to investigate the microscopic and/or ultrafast dynamics of matter samples, which have been previously driven out of equilibrium.
Advantages rely on the implementation of various applications based on two-color schemes and, more specifically, include the possibility of acquiring two-dimensional frequency maps, measuring electrons’ effective masses, or investigating electronic properties decoupled from the influence of the lattice. Particular focus will be put on experimental methods relying on photoelectric effect and photoelectron spectroscopy. In all experiments, we took advantage of one or more specific properties of HHG and FEL sources, such as controllable chirp, to study laser dressed states in helium, variable polarization, to study electronic properties of iron-based pnictides and ultrashort pulses (< 10 fs) to study the purely electronic dynamics in transition metal dichalcogenides.
On the other hand, the study of the interface between a molecule and a topological insulator revealed some intrinsic limitations and physical drawbacks of the technique, such as spurious effects originating from the high power pulses, like multiphoton absorption and the space charge effect, or the reduction of experimental resolution when pushing for shorter and shorter pulse durations. Some disadvantages are also connected to the current state-of-the-art in the field of ultrashort laser systems, where a trade-off needs to be found between repetition rate and laser power.
Finally, state-of-the-art experiments based on the ability to generate ultrashort pulses carrying orbital angular momentum in visible, near-infrared as well as extreme UV range will be presented. The use of these pulses opens the door to the investigation of new physical phenomena, such as probing magnetic vortices using extreme ultraviolet light from a free-electron laser or imprinting the spatial distribution of an ultrashort infrared pulse carrying orbital angular momentum onto a photoelectron wave packet. Keywords: ultrafast lasers, two-color experiments, photoemission, high-order harmonic generation, free-electron lasers, hot-electrons dynamics, surface science, pump-probe photoemission, ultraviolet photoemission, orbital angular momentum Published in RUNG: 02.12.2020; Views: 5178; Downloads: 143 Full text (19,78 MB) |
4. |
5. |
6. |