1. Reconstructing air-shower observables using a universality-based modelMaximilian Stadelmaier, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: Air-Shower universality describes the regularity in the longitudinal, lateral, and energy distributions of electromagnetic shower particles, as motivated by solutions of the cascade equations. To reconstruct air-shower observables from ultra-high-energy cosmic rays, we employ a universality-based model of shower development that incorporates hadronic particle components. Depending on the input parameters, the model can be used, for example, to estimate the depth of the shower maximum or the number of muons on event level. In this context, we present the expected performance for the reconstruction using air-shower simulations and data from the Pierre Auger Observatory. Keywords: ultra-high-energy cosmic rays, extensive air showers, air-shower universality, Pierre Auger Observatory, UHECR event reconstruction, air-shower maximum depth, muonic shower component Published in RUNG: 09.06.2025; Views: 342; Downloads: 3
Full text (1,03 MB) This document has many files! More... |
2. The core software and simulation activities for data analysis at the Pierre Auger ObservatoryEva Santos, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: The Pierre Auger Observatory, located near the town Malargüe in the province of Mendoza, Argentina, is the largest cosmic-ray detector in existence, covering an area of 3000 sq. km. The upgraded Observatory, in Phase II of operations, consists of a surface array of 1660 stations combining water Cherenkov, scintillator, and radio detectors. A subset of stations also includes underground muon detectors. Additionally, fluorescence detectors located at four sites overlook the array. The science goals for the enhanced Observatory include the measurement of the properties of ultra-high-energy cosmic rays with large statistics and high sensitivity to the primary composition. The Observatory is also sensitive to photons and neutrinos at the highest energies, allowing it to participate in multi-messenger studies. The Auger Offline Framework provides the tools to perform detailed simulations, using the Geant 4 toolkit, of all components of the Observatory and the analysis of both data and simulated events. It proved to have the flexibility needed to evolve during the lifetime of the Observatory, to accommodate new sub-detectors and, recently, changes to the station readout electronics. A new challenge is interfacing the framework with Machine Learning tools for both the development and execution of neural-network-based algorithms. Independent of the framework, CORSIKA 7 is used to simulate particles, fluorescence light, and radio signals produced by air showers. The production of simulations is coordinated
centrally to provide standard libraries for analyses and to optimize the use of computing resources. We will describe the evolution and status of the Offline Framework and the tools used to coordinate the simulation efforts. We will also discuss the challenges of the massive simulation efforts and the resources consumed to provide the simulation libraries required by the Collaboration. Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, air-shower simulations, extensive air showers, detector simulations Published in RUNG: 29.05.2025; Views: 392; Downloads: 6
Full text (787,25 KB) This document has many files! More... |
3. Estimation of muons on the surface and correlation with the muonic signal of AugerPrimeCarmina Perez Bertolli, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: This work focuses on estimating the muon density at ground level using simulations and investigating its correlation with the muonic signal recorded by the Water Cherenkov Detectors (WCDs) of the Pierre Auger Observatory. The study is motivated by the need to validate the estimation of the muonic signal in the WCDs. The methodology involves the development of a parameterization for the surface muon density based on simulated muon data from the Underground Muon Detector (UMD) of AugerPrime—an upgrade to the Pierre Auger Observatory. Our results indicate a negligible bias and a resolution better than 40 at energies above 10[sup]17.5 eV. Furthermore, we find a strong positive correlation between the estimated muon density and the simulated muonic signals in the WCDs. Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, AugerPrime upgrade, muonic air-shower component Published in RUNG: 29.05.2025; Views: 327; Downloads: 7
Full text (861,22 KB) This document has many files! More... |
4. Machine learning-based analyses using surface detector data of the Pierre Auger ObservatorySteffen Hahn, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: The Pierre Auger Observatory is the largest detector for the study of extensive air showers induced
by ultra-high-energy cosmic rays (UHECRs). Its hybrid detector design allows the simultaneous
observation of different parts of the shower evolution using various detection techniques. To
accurately understand the physics behind the origin of UHECRs, it is essential to determine their
mass composition. However, since UHECRs cannot be measured directly, estimating their masses
is highly non-trivial. The most common approach is to analyze mass-sensitive observables, such as
the number of secondary muons and the atmospheric depth of the shower maximum.
An intriguing part of the shower to estimate these observables is its footprint. The shower footprint is detected by ground-based detectors, such as the Water-Cherenkov detectors (WCDs) of the Surface Detector (SD) of the Observatory, which have an uptime of nearly 100%, resulting in a high number of observed events. However, the spatio-temporal information stored in the shower footprints is highly complex, making it very challenging to analyze the footprints using analytical and phenomenological methods. Therefore, the Pierre Auger Collaboration utilizes machine learning-based algorithms to complement classical methods in order to exploit the measured data with unprecedented precision. In this contribution, we highlight these machine learning-based analyses used to determine high-level shower observables that help to infer the mass of the primary particle, with a particular focus on analyses using the shower footprint detected by the WCDs and the Surface Scintillator Detectors (SSD) of the SD. We show that these novel methods show promising results on simulations and offer improved reconstruction performance when applied to measured data. Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, surface detector, Water-Cherenkov detectors (WCDs), Surface Scintillator Detectors (SSDs), UHECR mass composition, air-shower footprint, machine learning Published in RUNG: 16.05.2025; Views: 390; Downloads: 6
Full text (1,48 MB) This document has many files! More... |
5. Investigations of CORSIKA thinning levels suitable for studies of photon-hadron discrimination at ultra-high energiesFiona Ellwanger, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: Cosmic ray detectors like the 3000 sq. km surface array of the Pierre Auger Observatory are
capable of observing high-energy photons in the range of 10[sup]18 to 10[sup]20 eV if the flux
is sufficiently high.
However, no clear candidates for ultra-high-energy photons have been identified yet, so
simulations must be used to study typical trigger patterns and observables for discriminating photons from hadrons, e.g., with neural networks.
Thinning algorithms are applied to keep the computation time and file sizes in a manageable range since the simulation of ultra-high-energy particle showers is computationally expensive.
In CORSIKA, particles with energies below a certain fraction of the primary energy, the thinning level, are exposed to thinning.
In the case of thinning, only one of the particles emerging from an interaction is tracked.
By assigning a corresponding weight, this particle then represents a number of its siblings.
However, the weights of particles that originate from electromagnetic interactions can be 100 times larger than for hadronic interactions.
In contrast to hadronic showers, where a major part of the signal in a surface detector
is produced by muons, photon showers are almost purely electromagnetic.
Using simulations of photon-induced showers with two different thinning levels, the influence
on different observables used for photon-hadron discrimination is investigated.
Effects deriving from both statistical sampling and detector simulations are considered.
Possible influences on station-level as well as event-level observables are probed.
With this study, we are reassured that the optimal thinning parameters determined for
hadron-induced showers are also sufficient for photon-induced showers. Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, CORSIKA air-shower simulator Published in RUNG: 16.05.2025; Views: 389; Downloads: 6
Full text (3,18 MB) This document has many files! More... |
6. Improved calibration methods and reconstruction of the underground muon detector of the Pierre Auger ObservatoryJoaquín De Jesús, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: As part of the upgrade of the Pierre Auger Observatory, known as AugerPrime, the Underground
Muon Detector is being deployed in the low-energy extension of the Surface Detector. It comprises
an array of 30 m[sup]2 plastic scintillator muon counters, buried 2.3 meters underground near the water-Cherenkov detectors, allowing for direct measurement of the muonic component of air showers in the energy range of 10[sup]16.5 − 10[sup]19 eV. To achieve an extended dynamic range, the detector operates in two modes: the binary mode, which is optimized for low muon densities, and the ADC mode, designed for high muon densities. In this contribution, we present the latest improvements to the calibration procedure of the ADC mode and to the data reconstruction of the binary mode. We assess their performance with simulations. Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, AugerPrime upgrade, Auger underground muon detector (UMD), muonic air-shower component, detector calibration, data reconstruction Published in RUNG: 30.04.2025; Views: 662; Downloads: 8
Full text (991,94 KB) This document has many files! More... |
7. Amplifying UHECR arrival direction information using mass estimators at the Pierre Auger ObservatoryLorenzo Apollonio, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: The origin of Ultra-High-Energy Cosmic Rays (UHECRs) is one of the biggest mysteries in modern astrophysics. Since UHECRs are deflected by Galactic and extragalactic magnetic fields, their arrival directions do not point to their sources. Previous analyses conducted on the arrival directions of high-energy events (E ≥ 32 EeV) recorded by the Surface Detector of the Pierre Auger Observatory have not shown significant anisotropies. The largest excess found in the first 19 years of data - at the 4.0 sigma level - is in the region around Centaurus A, and it is also the driving force of a correlation of UHECR arrival directions with a catalog of Starburst Galaxies, which is at the 3.8 sigma level. Since UHECRs are mostly nuclei, the lightest ones (least charged) are also the least deflected. While the mass of the events can be estimated better using the Fluorescence Detector of the Pierre Auger Observatory, the Surface Detector provides the necessary statistics needed for astrophysical studies. The introduction of novel mass-estimation techniques, such as machine learning models and an algorithm based on air-shower universality, will help identify high-rigidity events in the Surface Detector data of the Pierre Auger Observatory. With this work, we present how event-per-event mass estimators can help enhance the sensitivity in the search for anisotropies in the arrival directions of UHECRs at small and intermediate angular scales using simulations. Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR propagation, UHECR arrival directions, UHECR mass composition, Centaurus A radio galaxy, starburst galaxies, air-shower universality Published in RUNG: 30.04.2025; Views: 566; Downloads: 11
Full text (2,03 MB) This document has many files! More... |
8. Measuring the proton-proton interaction cross section with hybrid data of the Pierre Auger ObservatoryOlena Tkachenko, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution Abstract: The depth of the maximum of an air shower development, Xmax, as observed with fluorescence telescopes, is among the most sensitive observables for studying the interaction characteristics and primary composition of ultra-high-energy cosmic rays. However, precise measurement of the interaction cross section remains challenging, as standard analyses often rely on assumptions about the composition, which are closely tied to the validity of specific hadronic interaction models. In this work, we discuss a method for the simultaneous estimation of the proton-proton interaction cross section and primary mass composition, addressing the limitations of separate measurements. The inclusion of the Xmax scale into the fit further accounts for systematic uncertainties in the data and theoretical uncertainties in particle production. The performance of the method is evaluated using simulations that include detector responses under realistic conditions and with a particular focus on assessing the systematic uncertainties of the fit. Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, air shower maximum depth Published in RUNG: 28.03.2025; Views: 598; Downloads: 11
Full text (3,00 MB) This document has many files! More... |
9. Inference of the Mass Composition of Cosmic Rays with Energies from 10[sup]18.5 to 10[sup]20 eV Using the Pierre Auger Observatory and Deep LearningA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article Abstract: We present measurements of the atmospheric depth of the shower maximum Xmax,
inferred for the first time on an event-by-event level using the Surface Detector
of the Pierre Auger Observatory. Using deep learning, we were able to extend
measurements of the Xmax distributions up to energies of 100 EeV (10[sup]20 eV),
not yet revealed by current measurements, providing new insights into the mass
composition of cosmic rays at extreme energies.
Gaining a 10-fold increase in statistics compared to the Fluorescence Detector data,
we find evidence that the rate of change of the average Xmax with the logarithm
of energy features three breaks at 6.5 ± 0.6 (stat) ± 1 (sys) EeV,
11 ± 2 (stat) ± 1 (sys) EeV, and 31 ± 5 (stat) ± 3 (sys) EeV, in the vicinity to the three
prominent features (ankle, instep, suppression) of the cosmic-ray flux.
The energy evolution of the mean and standard deviation of the measured Xmax
distributions indicates that the mass composition becomes increasingly heavier
and purer, thus being incompatible with a large fraction of light nuclei between
50 EeV and 100 EeV. Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of the shower maximum, fluorescence detector, surface detector, deep learning Published in RUNG: 20.01.2025; Views: 940; Downloads: 6
Full text (586,04 KB) This document has many files! More... |
10. Measurement of the depth of maximum of air-shower profiles with energies between ▫$10^{18.5} and 10^{20}$▫ eV using the surface detector of the Pierre Auger Observatory and deep learningA. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article Abstract: We report an investigation of the mass composition of cosmic rays with energies
from 3 to 100 EeV (1 EeV = 10[sup]18 eV) using the distributions of the depth of shower
maximum Xmax. The analysis relies on ∼50,000 events recorded by the surface detector
of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm.
Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to
fluorescence measurements at the Observatory. After cross-calibration using
the fluorescence detector, this enables the first measurement of the evolution of the mean
and the standard deviation of the Xmax distributions up to 100 EeV.
Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier
composition with increasing energy can be confirmed and is extended to 100 EeV.
(ii) The evolution of the fluctuations of Xmax toward a heavier and purer composition
with increasing energy can be confirmed with high statistics. We report a rather heavy
composition and small fluctuations in Xmax at the highest energies.
(iii) We find indications for a characteristic structure beyond a constant change
in the mean logarithmic mass, featuring three breaks that are observed in proximity
to the ankle, instep, and suppression features in the energy spectrum. Keywords: ultra-high-energy cosmic rays, UHECRs, extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of shower maximum, fluorescence detector, surface detector, deep learning Published in RUNG: 20.01.2025; Views: 948; Downloads: 8
Full text (2,71 MB) This document has many files! More... |