Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Effective microorganisms technology applied to sewage sludge and tested in short exposure on Lepidium sativum
Tanja Buh, Leja Goljat, Darian Rampih, Petra Makorič, Sara Pignattelli, 2024, original scientific article

Abstract: Sewage sludge has fertilizer properties and can supply a large amount of necessary nutrients to the crops, because it is full of organic matter, carbon, nitrogen and other nutrients, but on the other hand, it also contains a lot of toxic compounds, derived from its origin, such as heavy metals, antibiotics and microplastics. Effective microorganisms are a collection of naturally occurring beneficial microorganisms that are able to coexist and are commonly used in agriculture and gardening to improve plant performance and production. In this study, increasing concentrations of sewage sludge alone and added with effective microorganisms were evaluated in a short exposure on Lepidium sativum L. Parameters that were evaluated are: (i) percentage inhibition of germination, (ii) root length, (iii) biomass, (iv) soil pH, (v) total organic carbon and nitrogen both at soil and at root level. Results carried out from our experiment highlighted that effective microorganisms when coupled with sludge are able to restore biometric parameters by resetting seeds germinability inhibition and improving root elongation more than 50% when compared with plants added only with sludge, restoring the values almost of those to the control plants, as well as for soil pH values. Total organic carbon and total nitrogen are boosted at soil level almost at 50% when compared with the same concentrations added only with sludge, while at root level they appear decreased only in plants directly added with sludge treated with effective microorganisms
Keywords: sewage sludge, effective microorganism, total organic carbon, total nitrogen, germinability, short plants exposure, acute toxicity, biomass, pH
Published in RUNG: 12.04.2024; Views: 529; Downloads: 1
URL Link to file
This document has many files! More...

2.
Effects of polyethylene terephthalate (PET) microplastics and acid rain on physiology and growth of Lepidium sativum
Sara Pignattelli, Andrea Broccoli, Manuela Piccardo, Antonio Terlizzi, Monia Renzi, 2021, original scientific article

Abstract: This study evaluated the chronic toxicity (30 days) of different sizes of polyethylene terephthalate (PET) microplastics (60e3000 mm) provided alone or in combination with acid rain, on garden cress (Lepidium sativum). Both biometrical and physiological traits have been evaluated: i) percentage inhibition of seed germination, plant height, leaf number and fresh biomass production; ii) oxidative stress responses (hydrogen peroxide; ascorbic acid and glutathione production); iii) impairment in photosynthetic machinery in term of pigments production; iv) aminolevulinic acid and proline production. Results highlighted that different sizes of PET, alone or in combination with acid rain, are able to negatively affect both biometrical and physiological plant traits. In particular, the lower size of microplastics is able to negatively affect growth and development, as well as to trigger the oxidative burst. Regarding the pigments production, PET coupled with acid rain, induced a higher production of Chl-b, and an inhibition of aminolevulinic acid.
Keywords: polyethylene terephthalate, acid rain, lepidium sativum, oxidative burst, germinability, chlorophylls
Published in RUNG: 02.04.2021; Views: 2164; Downloads: 0
This document has many files! More...

Search done in 0.01 sec.
Back to top