Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 7 / 7
First pagePrevious page1Next pageLast page
1.
2.
3.
A DNA origami plasmonic sensor with environment-independent read-out
Matjaž Valant, Mattia Fanetti, 2019, original scientific article

Keywords: DNA origami, plasmonic sensor, molecular detection, gold nanoparticle
Published in RUNG: 08.11.2019; Views: 3014; Downloads: 0
This document has many files! More...

4.
Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin
Chieu D. Tran, Franja Prosenc, Mladen Franko, 2018, original scientific article

Abstract: A novel, one-pot method was developed to synthesize gold nanoparticle composite from cellulose (CEL), wool keratin (KER) and chloroauric acid. Two ionic liquids, butylmethylimmidazolium chloride and ethylmethylimmidazolium bis(trifluoromethylsulfonyl)imide were used to dissolve CEL, KER and HAuCl4. X-ray diffraction and X-ray photoelectron results show that Au3+ was completely reduced to Au0NPs with size of (5.5 ± 1) nm directly in the composite with NaBH4. Spectroscopy and imaging results indicate that CEL and KER remained chemically intact and were homogeneously distributed in the com- posites with Au0NPs. Encapsulating Au0NPs into [CEL+KER] composite made the composite fully biocom- patible and their bactericidal capabilities were increased by the antibacterial activity of Au0NPs. Specifically, the [CEL+KER+Au0NPs] composite exhibited up to 97% and 98% reduction in growth of antibi- otic resistant bacteria such as vancomycin resistant Enterococcus faecalis and methicillin resistant Staphylococcus aureus, and was not cytotoxic to human fibroblasts. While [CEL+KER] composite is known to possess some antibacterial activity, the enhanced antibacterial observed here was due solely to added Au0NPs. These results together with our previous finding that [CEL+KER] composites can be used for con- trolled delivery of drugs clearly indicate that the [CEL+KER+Au0NPs] composites possess all required properties for successful use as dressing to treat chronic ulcerous infected wounds.
Keywords: Ionic liquid Green Sustainable Polysaccharide Keratin Wound dressing Gold nanoparticles Antibiotic-resistant bacteria
Published in RUNG: 27.09.2017; Views: 4276; Downloads: 0
This document has many files! More...

5.
Formation of Hybrid Electronic States in FePc Chains Mediated by the Au(110) Surface
Maria Grazia Betti, Pierluigi Gargiani, Carlo Mariani, Stefano Turchini, Nicola Zema, Sara Fortuna, Arrigo Calzolari, Stefano Fabris, 2012, original scientific article

Abstract: Iron–phthalocyanine (FePc) molecules deposited on the Au(110) surface self-organize in ordered chains driven by the reconstructed Au channels. The interaction process induces a rehybridization of the electronic states localized on the central metal atom, breaking the 4-fold symmetry of the molecular orbitals of the FePc molecules. The molecular adsorption is controlled by a symmetry-determined mixing between the electronic states of the Fe metal center and of the Au substrate, as deduced by photoemission and absorption spectroscopy exploiting light polarization. DFT calculations rationalize this mixing of the Fe and Au states on the basis of symmetry arguments. The calculated electronic structure reproduces the main experimental spectral features, which are associated to a distorted molecular structure displaying a trigonal bipyramidal geometry of the ligands around the metal center.
Keywords: phthalocyanine, Au(110), gold, surface, DFT, density functional theory, calculation, simulation
Published in RUNG: 13.10.2016; Views: 4771; Downloads: 0
This document has many files! More...

6.
Structural phases of ordered FePc-nanochains self-assembled on Au(110)
Betti Maria Grazia, Pierluigi Gargiani, Carlo Mariani, Roberto Biagi, Jun Fujii, Giorgio Rossi, Andrea Resta, Stefano Fabris, Sara Fortuna, Xavier Torrelles, Manvendra Kumar, Maddalena Pedio, 2012, original scientific article

Abstract: Iron-phthalocyanine molecules deposited on the Au(110) reconstructed channels assemble into one-dimensional molecular chains, whose spatial distribution evolves into different structural phases at increasing molecular density. The plasticity of the Au channels first induces an ordered phase with a 5×5 symmetry, followed by a second long-range ordered structure composed by denser chains with a 5×7 periodicity with respect to the bare Au surface, as observed in the low-energy electron-diffraction (LEED) and grazing incidence X-ray diffraction (GIXRD) patterns. The geometry of the FePc molecular assemblies in the Au nanorails is determined by scanning tunneling microscopy (STM). For the 5×7 phases, the GIXRD analysis identifies a “4-3” rows profile along the [001] direction in the Au surface and an on-top FePc adsorption site, further confirmed by density functional theory (DFT) calculations. The latter also reveals the electronic mixing of the interface states. The chain assembly is driven by the molecule–molecule interaction and the chains interact with the Au nanorails via the central metal atom, while the chain–chain distance in the different structural phases is primarily driven by the plasticity of the Au surface.
Keywords: STM, LEED, DFT, density functional theory, phthalocyanine, Au(110), gold, surface
Published in RUNG: 13.10.2016; Views: 4667; Downloads: 0
This document has many files! More...

7.
Spin and orbital configuration of metal phthalocyanine chains assembled on the Au(110) surface
Gargiani Pierluigi, Giorgio Rossi, Roberto Biagi, Valdis Corradini, Maddalena Pedio, Sara Fortuna, Arrigo Calzolari, Stefano Fabris, Julio Criginski Cezar, N. B. Brookes, Maria Grazia Betti, 2013, original scientific article

Abstract: The spin and orbital configuration of magnetic metal phthalocyanines (MPcs) deposited on metallic substrates are strongly influenced by the rehybridization of the molecular states with the underlying metal. FePc, CoPc, and CuPc isolated molecules are archetypal systems to investigate the interrelationship between magnetic moments and orbital symmetry after deposition on a metallic substrate. MPcs form long-range ordered chains self-assembled along the reconstructed channels of the Au(110) surface. X-ray magnetic circular dichroism from the L2,3 absorption edges of Fe, Co, and Cu shows that the orbital and spin configuration are strongly modified upon adsorption on the Au(110) surface if the orbitals responsible of the magnetic moment are involved in the interaction process. The magnetic moment for a single layer of molecular chains is completely quenched for the CoPc molecules, fully preserved for the CuPc and reduced for the FePc ones. The modified magnetic configuration is confined to the very interface layer, i.e., to the MPc molecules bound to the metal substrate up to the compact packing of the single layer. The different response can be rationalized in terms of the symmetry/orientation of the metal-ion d states interacting with the substrate states, as indicated by density functional theory calculations in agreement with experimental findings.
Keywords: phthalocyanine, Au(110), gold, self-assembly, pattern, configuration, density functional theory, DFT, CuPc, FePc
Published in RUNG: 12.10.2016; Views: 4652; Downloads: 0
This document has many files! More...

Search done in 0.04 sec.
Back to top