Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 9 / 9
First pagePrevious page1Next pageLast page
Aerosol dust absorption : measurements with a reference instrument (PTAAM-2[lambda]) and impact on the climate as measured in airborne JATAC/CAVA-AW 2021/2022 campaigns
Jesús Yus-Díez, Luka Drinovec, Marija Bervida, Uroš Jagodič, Blaž Žibert, Griša Močnik, 2024, published scientific conference contribution abstract

Abstract: Aerosol absorption coefficient measurements classically feature a very large uncertainty, especially given the absence of a reference method. The most used approach using filter-photometers is by measuring the attenuation of light through a filter where aerosols are being deposited. This presents several artifacts, with cross-sensitivity to scattering being most important at high single scattering albedo with the error exceeding 100%. We present lab campaign results where we have resuspended dust samples from different mid-latitude desert regions and measured the dust absorption and scattering coefficients, their mass concentration and the particle size distribution. The absorption coefficients were measured with two types of filter photometers: a Continuous Light Absorption Photometers (CLAP) and a multi-wavelength Aethalometer (AE33). The  dual-wavelength photo-thermal interferometer (PTAAM-2λ) was employed as the reference. Scattering coefficients were measured with an Ecotech Aurora 4000 nephelometer. The mass concentration was obtained after the weighting of filters before and after the sampling, and the particle size distribution (PSD) was measured by means of optical particle counters (Grimm 11-D).Measurements of the scattering with the nephelometer and absorption with the PTAAM-2λ we obtained the filter photometer multiple scattering parameter and cross-sensitivity to scattering as a function of the different sample properties. Moreover, by determining the mass concentration and the absorption coefficients of the samples, we derived the mass absorption cross-sections of the different dust samples, which can be linked to their size distribution as well as to their mineralogical composition.The focus of the JATAC campaign in September 2021 and September 2022 on and above Cape Verde Islands was on the calibration/validation of the ESA Aeolus satellite ALADIN lidar, however, the campaign also featured secondary scientific climate-change objectives. As part of this campaign, a light aircraft was set-up for in-situ aerosol measurements. Several flights were conducted over the Atlantic Ocean up to and above 3000 m above sea level during intense dust transport events. The aircraft was instrumented to determine the absorption coefficients using a pair of Continuous Light Absorption Photometers (CLAPs) measuring in the fine and coarse fractions separately, with parallel measurements of size distributions in these size fractions using two Grimm 11-D Optical Particle Size Spectrometers (OPSS). In addition, we performed measurements of the total and diffuse solar irradiance with a DeltaT SPN1 pyranometer.The combination of the absorption and PSD with source identification techniques enabled the separation of the contributions to  absorption by dust and black carbon. The atmospheric heating rate of these two contributions was determined by adding the irradiance measurements. Therefore, the integration of the results from the Using laboratory resuspension experiments  to interpret the airborne measurements is of great relevance for the determination  of the radiative effect of the Saharan Aerosol Layer as measured over the tropical Atlantic ocean.
Keywords: black carbon, mineral dust, Saharan dust, atmospheric heating rate, climate change, airborne measurements
Published in RUNG: 18.03.2024; Views: 599; Downloads: 2
.pdf Full text (291,71 KB)
This document has many files! More...

Heating rate and energy gradient from the tropics to the North Pole
Luca Ferrero, Martin Rigler, Asta Gregorič, Griša Močnik, 2024, published scientific conference contribution abstract

Abstract: Absorbing aerosol species, such as Black (BC) and Brown (BrC) Carbon, are able to warm the atmosphere. The role of aerosols is one of the least clear aspects in the so called “Arctic Amplification” (AA) and up to now this was mostly modelled [1,2]. For this reason, we took part in four scientific cruises (AREX, Arctic-Expedition, summer 2018, 2019, 2021 and EUREC4A, 2020) in the North Atlantic, eastward and south-eastward of Barbados, aiming at the determination of the aerosol chemical composition and properties from the Tropics to the North Pole. The Heating Rate (HR) was experimentally determined at 1 minute time-resolution along different latitudes by means of an innovative methodology [3], obtained by cumulatively taking into account the aerosol optical properties, i.e. the absorption coefficients (measured by AE33 Aethalometer) and incident radiation (direct, diffuse and reflected) across the entire solar spectrum. The HR computed along AREX and in Milan (in the same period) were used to determine the energy gradient, due to the LAA induced heat storage at mid-latitudes, which contributes to AA through the atmospheric heat transport northward. Moreover, aerosol chemical composition was achieved by means of sampling via high volume sampler (ECHO-PUF Tecora) and analysis via ion chromatography, TCA08 for Total Carbon content, Aethalometer AE33 (for BC), ICP-OES for elements. A clear latitudinal behaviour in Black Carbon concentrations, with the highest values at low latitudes (e.g. average BC concentration in Gdansk up to 1507±75 ng/m3) and a progressive decrease moving northwards and away from the big Arctic settlements (Black Carbon concentrations within the 81st parallel: 5±1 ng/m3). According to the latitudinal behaviour of BC concentrations and solar radiation (decreases towards the north while the diffuse component increases), HR decreases noticeably towards the Arctic: e.g. higher in the harbor of Gdansk (0.290±0.010 K/day) followed by the Baltic Sea (0.04±0.01 K/day), the Norvegian Sea (0.010±0.010 K/day) and finally with the lowest values in the pure Arctic Ocean (0.003±0.001 K/day). Accordingly, the energy density added to the system by the aerosol, a positive forcing that differs by 2 orders of magnitude between mid-latitudes and North Pole was found: 347.3 ± 11.8 J/m3 (Milan), 244.8 ± 12.2 J/m3 (Gdansk) and 2.6 ± 0.2 J/m3 (80°N). These results highlight the presence of a great energy gradient between mid-latitudes and Arctic that can trigger a heat transport towards the Arctic. Moreover this was strengthen by the HR value for EUREC4A in Barbados that was 0.175±0.003 K/day. Finally, preliminary results from Antarctica collected onboard the Italian RV Laura Bassi cruising the Southern Ocean and the Ross Sea will be shown.     Acknoledgements: GEMMA Center, Project TECLA MIUR – Dipartimenti di Eccellenza 2023–2027. JPI EUREC4A-OA project. CAIAC (oCean Atmosphere Interactions in the Antarctic regions and Convergence latitude) PNRA project   References [1] Navarro, J. C. A. et al. (2016) Nat. Geosci. 9, 277–281. [2] Shindell, D. and Faluvegi, G. (2009) Nat. Geosci. 2, 294–300. [3] Ferrero, L. et al. (2018) Environ. Sci. Technol. 52, 3546 3555.
Keywords: blackcarbon, brown carbon, atmospheric heating rate, climate change
Published in RUNG: 18.03.2024; Views: 490; Downloads: 2
.pdf Full text (291,43 KB)
This document has many files! More...

Determining the Aethalometer multiple scattering enhancement factor C from the filter loading parameter
Luca Ferrero, Niccolò Losi, Martin Rigler, Asta Gregorič, C. Colombi, L. D'Angelo, E. Cuccia, A. M. Cefalì, I. Gini, A. Doldi, 2024, original scientific article

Abstract: Light-absorbing aerosols heat the atmosphere; an accurate quantification of their absorption coefficient is mandatory. However, standard reference instruments (CAPS, MAAP, PAX, PTAAM) are not always available at each measuring site around the world. By integrating all previous published studies concerning the Aethalometers, the AE33 filter loading parameter, provided by the dual-spot algorithm, were used to determine the multiple scattering enhancement factor from the Aethalometer itself (hereinafter CAE) on an yearly and a monthly basis. The method was developed in Milan, where Aethalometer measurements were compared with MAAP data; the comparison showed a good agreement in terms of equivalent black carbon (R2 = 0.93; slope = 1.02 and a negligible intercept = 0.12 μg m−3) leading to a yearly experimental multiple scattering enhancement factor of 2.51 ± 0.04 (hereinafter CMAAP). On a yearly time base the CAE values obtained using the new approach was 2.52 ± 0.01, corresponding to the experimental one (CMAAP). Considering the seasonal behavior, higher experimental CMAAP and computed CAE values were found in summer (2.83 ± 0.12) whereas, the lower ones in winter/early-spring (2.37 ± 0.03), in agreement with the single scattering albedo behavior in the Po Valley. Overall, the agreement between the experimental CMAAP and CAE showed a root mean squared error (RMSE) of just 0.038 on the CMAAP prediction, characterized by a slope close to 1 (1.001 ± 0.178), a negligible intercept (−0.002 ± 0.455) and a high degree of correlation (R2 = 0.955). From an environmental point of view, the application of a dynamic (space/time) determination of CAE increases the accuracy of the aerosol heating rate (compared to applying a fixed C value) up to 16 % solely in Milan, and to 114 % when applied in the Arctic at 80°N.
Keywords: aethalometer, C factor, loading parameter, MAAP, heating rate
Published in RUNG: 02.02.2024; Views: 712; Downloads: 4
.pdf Full text (3,18 MB)

Airborne in-situ measurements during JATAC/CAVA-AW 2021/2022 campaigns : first climate-relevant results
Jesús Yus-Díez, Marija Bervida, Luka Drinovec, Blaž Žibert, Matevž Lenarčič, Griša Močnik, 2023, published scientific conference contribution abstract

Abstract: The JATAC campaign in September 2021 and September 2022 on and above Cape Verde Islands have resulted in a large dataset of in-situ and remote measurements. In addition to the calibration/validation of the ESA’s Aeolus ALADIN during the campaign, the campaign also featured secondary scientific objectives related to climate change. The atmosphere above the Atlantic Ocean off the coast of West Africa is ideal for the study of the Saharan Aerosol layer (SAL), the long-range transport of dust, and the regional influence of SAL aerosols on the climate. We have instrumented a light aircraft (Advantic WT-10) with instrumentation for the in-situ aerosol characterization. Ten flights were conducted over the Atlantic Ocean up to over 3000 m above sea level during two intense dust transport events. PollyXT, and EvE lidars were deployed at the Ocean Science Center, measuring the vertical optical properties of aerosols and were also used to plan the flights. The particle light absorption coefficient was determined at three different wavelengths with Continuous Light Absorption Photometers (CLAP). They were calibrated with the dual wavelength photo-thermal interferometric measurement of the aerosol light-absorption coefficient in the laboratory. The particle size distributions above 0.3 µm diameter were measured with two Grimm 11-D Optical Particle Size Spectrometers (OPSS). These measurements were conducted separately for the fine aerosol fraction and the enriched coarse fraction using an isokinetic inlet and a pseudo-virtual impactor, respectively. The aerosol light scattering and backscattering coefficients were measured with an Ecotech Aurora 4000 nephelometer. The instrument used a separate isokinetic inlet and was calibrated prior to and its calibration validated after the campaign with CO2. We have measured the total and diffuse solar irradiance with a DeltaT SPN1 pyranometer. CO2 concentration, temperature, aircraft GPS position altitude, air and ground speed were also measured. The in-situ single-scattering albedo Angstrom exponent and the lidar depolarization ratio will be compared as two independent parameters indicating the presence of Saharan dust. We will show differences between homogeneous Saharan dust layer in space (horizontally and vertically) and time and events featuring strong horizontal gradients in aerosol composition and concentration, and layering in the vertical direction. These layers often less than 100 m thick, separated by layers of air with no dust. Complex mixtures of aerosols in the outflow of Saharan dust over the Atlantic Ocean in the tropics will be characterized. We will show the in-situ atmospheric heating/cooling rate and provide insight into the regional and local effects of this heating of the dust layers. These measurements will support of the research on evolution, dynamics, and predictability of tropical weather systems and provide input into and verification of the climate models.
Keywords: mineral dust, climate change, heating rate, black carbon, Aeolus satellite, airborne measurements
Published in RUNG: 21.12.2023; Views: 822; Downloads: 4
.pdf Full text (292,05 KB)
This document has many files! More...

Anthropic settlementsʹ impact on the light-absorbing aerosol concentrations and heating rate in the arctic
Niccolò Losi, Piotr Markuszewski, Martin Rigler, Asta Gregorič, Griša Močnik, Violetta Drozdowska, Przemek Makuch, Tymon Zielinski, Paulina Pakszys, Małgorzata Kitowska, 2023, original scientific article

Abstract: Light-absorbing aerosols (LAA) impact the atmosphere by heating it. Their effect in the Arctic was investigated during two summer Arctic oceanographic campaigns (2018 and 2019) around the Svalbard Archipelago in order to unravel the differences between the Arctic background and the local anthropic settlements. Therefore, the LAA heating rate (HR) was experimentally determined. Both the chemical composition and high-resolution measurements highlighted substantial differences between the Arctic Ocean background (average eBC concentration of 11.7 ± 0.1 ng/m3) and the human settlements, among which the most impacting appeared to be Tromsø and Isfjorden (mean eBC of 99.4 ± 3.1 ng/m3). Consequently, the HR in Isfjorden (8.2 × 10−3 ± 0.3 × 10−3 K/day) was one order of magnitude higher than in the pristine background conditions (0.8 × 10−3 ± 0.9 × 10−5 K/day). Therefore, we conclude that the direct climate impact of local LAA sources on the Arctic atmosphere is not negligible and may rise in the future due to ice retreat and enhanced marine traffic.
Keywords: light-absorbing aerosols, black carbon, climate change, heating rate
Published in RUNG: 21.12.2023; Views: 855; Downloads: 5
.pdf Full text (3,57 MB)
This document has many files! More...

Consistent determination of the heating rate of light-absorbing aerosol using wavelength- and time-dependent Aethalometer multiple-scattering correction
Luca Ferrero, Vera Bernardoni, Luca Santagostini, Sergio Cogliati, Francesca Soldan, Sara Valentini, Dario Massabò, Griša Močnik, Asta Gregorič, Martin Rigler, 2021, original scientific article

Abstract: Accurate and temporally consistent measurements of light absorbing aerosol (LAA) heating rate (HR) and of its source apportionment (fossil-fuel, FF; biomass-burning, BB) and speciation (black and brown Carbon; BC, BrC) are needed to evaluate LAA short-term climate forcing. For this purpose, wavelength- and time-dependent accurate LAA absorption coefficients are required. HR was experimentally determined and apportioned (sources/species) in the EMEP/ACTRIS/COLOSSAL-2018 winter campaign in Milan (urban-background site). Two Aethalometers (AE31/AE33) were installed together with a MAAP, CPC, OPC, a low volume sampler (PM2.5) and radiation instruments. AE31/AE33 multiple-scattering correction factors (C) were determined using two reference systems for the absorption coefficient: 1) 5-wavelength PP_UniMI with low time resolution (12 h, applied to PM2.5 samples); 2) timely-resolved MAAP data at a single wavelength. Using wavelength- and time-independent C values for the AE31 and AE33 obtained with the same reference device, the total HR showed a consistency (i.e. reproducibility) with average values comparable at 95% probability. However, if different reference devices/approaches are used, i.e. MAAP is chosen as reference instead of a PP_UniMI, the HR can be overestimated by 23-30% factor (by both AE31/AE33). This became more evident focusing on HR apportionment: AE33 data (corrected by a wavelength- and time-independent C) showed higher HRFF (+24±1%) and higher HRBC (+10±1%) than that of AE31. Conversely, HRBB and HRBrC were -28±1% and -29±1% lower for AE33 compared to AE31. These inconsistencies were overcome by introducing a wavelength-dependent Cλ for both AE31 and AE33, or using multi-wavelength apportionment methods, highlighting the need for further studies on the influence of wavelength corrections for HR determination. Finally, the temporally-resolved determination of C resulted in a diurnal cycle of the HR not statistically different whatever the source- speciation- apportionment used.
Keywords: climate change, heating rate, black carbon, light absorbing aerosols
Published in RUNG: 09.06.2021; Views: 2257; Downloads: 0
This document has many files! More...

The impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon in the Po Valley
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, Ezio Bolzacchini, 2021, original scientific article

Abstract: We experimentally quantified the impact of cloud fraction and cloud type on the heating rate (HR) of black and brown carbon (HRBC and HRBrC). In particular, we examined in more detail the cloud effect on the HR detected in a previous study (Ferrero et al., 2018). High-time-resolution measurements of the aerosol absorption coefficient at multiple wavelengths were coupled with spectral measurements of the direct, diffuse and surface reflected irradiance and with lidar–ceilometer data during a field campaign in Milan, Po Valley (Italy). The experimental set-up allowed for a direct determination of the total HR (and its speciation: HRBC and HRBrC) in all-sky conditions (from clear-sky conditions to cloudy). The highest total HR values were found in the middle of winter (1.43 ± 0.05 K d−1), and the lowest were in spring (0.54 ± 0.02 K d−1). Overall, the HRBrC accounted for 13.7 ± 0.2 % of the total HR, with the BrC being characterized by an absorption Ångström exponent (AAE) of 3.49 ± 0.01. To investigate the role of clouds, sky conditions were classified in terms of cloudiness (fraction of the sky covered by clouds: oktas) and cloud type (stratus, St; cumulus, Cu; stratocumulus, Sc; altostratus, As; altocumulus, Ac; cirrus, Ci; and cirrocumulus–cirrostratus, Cc–Cs). During the campaign, clear-sky conditions were present 23 % of the time, with the remaining time (77 %) being characterized by cloudy conditions. The average cloudiness was 3.58 ± 0.04 oktas (highest in February at 4.56 ± 0.07 oktas and lowest in November at 2.91 ± 0.06 oktas). St clouds were mostly responsible for overcast conditions (7–8 oktas, frequency of 87 % and 96 %); Sc clouds dominated the intermediate cloudiness conditions (5–6 oktas, frequency of 47 % and 66 %); and the transition from Cc–Cs to Sc determined moderate cloudiness (3–4 oktas); finally, low cloudiness (1–2 oktas) was mostly dominated by Ci and Cu (frequency of 59 % and 40 %, respectively). HR measurements showed a constant decrease with increasing cloudiness of the atmosphere, enabling us to quantify for the first time the bias (in %) of the aerosol HR introduced by the simplified assumption of clear-sky conditions in radiative-transfer model calculations. Our results showed that the HR of light-absorbing aerosol was ∼ 20 %–30 % lower in low cloudiness (1–2 oktas) and up to 80 % lower in completely overcast conditions (i.e. 7–8 oktas) compared to clear-sky ones. This means that, in the simplified assumption of clear-sky conditions, the HR of light-absorbing aerosol can be largely overestimated (by 50 % in low cloudiness, 1–2 oktas, and up to 500 % in completely overcast conditions, 7–8 oktas). The impact of different cloud types on the HR was also investigated. Cirrus clouds were found to have a modest impact, decreasing the HRBC and HRBrC by −5 % at most. Cumulus clouds decreased the HRBC and HRBrC by −31 ± 12 % and −26 ± 7 %, respectively; cirrocumulus–cirrostratus clouds decreased the HRBC and HRBrC by −60 ± 8 % and −54 ± 4 %, which was comparable to the impact of altocumulus (−60 ± 6 % and −46 ± 4 %). A higher impact on the HRBC and HRBrC suppression was found for stratocumulus (−63 ± 6 % and −58 ± 4 %, respectively) and altostratus (−78 ± 5 % and −73 ± 4 %, respectively). The highest impact was associated with stratus, suppressing the HRBC and HRBrC by −85 ± 5 % and −83 ± 3 %, respectively. The presence of clouds caused a decrease of both the HRBC and HRBrC (normalized to the absorption coefficient of the respective species) of −11.8 ± 1.2 % and −12.6 ± 1.4 % per okta. This study highlights the need to take into account the role of both cloudiness and different cloud types when estimating the HR caused by both BC and BrC and in turn decrease the uncertainties associated with the quantification of their impact on the climate.
Keywords: black carbon, brown carbon, cloud, atmospheric heating rate, climate change
Published in RUNG: 29.03.2021; Views: 2535; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top