1. Inference of the Mass Composition of Cosmic Rays with Energies from 10[sup]18.5 to 10[sup]20 eV Using the Pierre Auger Observatory and Deep LearningA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article Abstract: We present measurements of the atmospheric depth of the shower maximum Xmax,
inferred for the first time on an event-by-event level using the Surface Detector
of the Pierre Auger Observatory. Using deep learning, we were able to extend
measurements of the Xmax distributions up to energies of 100 EeV (10[sup]20 eV),
not yet revealed by current measurements, providing new insights into the mass
composition of cosmic rays at extreme energies.
Gaining a 10-fold increase in statistics compared to the Fluorescence Detector data,
we find evidence that the rate of change of the average Xmax with the logarithm
of energy features three breaks at 6.5 ± 0.6 (stat) ± 1 (sys) EeV,
11 ± 2 (stat) ± 1 (sys) EeV, and 31 ± 5 (stat) ± 3 (sys) EeV, in the vicinity to the three
prominent features (ankle, instep, suppression) of the cosmic-ray flux.
The energy evolution of the mean and standard deviation of the measured Xmax
distributions indicates that the mass composition becomes increasingly heavier
and purer, thus being incompatible with a large fraction of light nuclei between
50 EeV and 100 EeV. Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of the shower maximum, fluorescence detector, surface detector, deep learning Published in RUNG: 20.01.2025; Views: 180; Downloads: 1 Full text (586,04 KB) This document has many files! More... |
2. Measurement of the depth of maximum of air-shower profiles with energies between ▫$10^{18.5} and 10^{20}$▫ eV using the surface detector of the Pierre Auger Observatory and deep learningA. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article Abstract: We report an investigation of the mass composition of cosmic rays with energies
from 3 to 100 EeV (1 EeV = 10[sup]18 eV) using the distributions of the depth of shower
maximum Xmax. The analysis relies on ∼50,000 events recorded by the surface detector
of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm.
Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to
fluorescence measurements at the Observatory. After cross-calibration using
the fluorescence detector, this enables the first measurement of the evolution of the mean
and the standard deviation of the Xmax distributions up to 100 EeV.
Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier
composition with increasing energy can be confirmed and is extended to 100 EeV.
(ii) The evolution of the fluctuations of Xmax toward a heavier and purer composition
with increasing energy can be confirmed with high statistics. We report a rather heavy
composition and small fluctuations in Xmax at the highest energies.
(iii) We find indications for a characteristic structure beyond a constant change
in the mean logarithmic mass, featuring three breaks that are observed in proximity
to the ankle, instep, and suppression features in the energy spectrum. Keywords: ultra-high-energy cosmic rays, UHECRs, extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of shower maximum, fluorescence detector, surface detector, deep learning Published in RUNG: 20.01.2025; Views: 195; Downloads: 0 Full text (2,71 MB) This document has many files! More... |
3. Multi-messenger and transient astrophysics with the Cherenkov Telescope ArrayŽ. Bošnjak, Anthony M. Brown, Alessandro Carosi, M. Chernyakova, Pierre Cristofari, F. Longo, A. López Oramas, M. Santander, Serguei Vorobiov, Danilo Zavrtanik, 2021, other component parts Abstract: The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators. Keywords: multi-messenger astrophysics, gravitational waves, very-high-energy (VHE) gamma rays, cosmic rays, VHE neutrinos, transient astrophysical phenomena, Cherenkov Telescope Array Observatory Published in RUNG: 13.01.2025; Views: 195; Downloads: 4 Full text (6,21 MB) This document has many files! More... |
4. Origin and role of relativistic cosmic particlesA. Araudo, G. Morlino, B. Olmi, Fabio Acero, I. Agudo, Rémi Adam, Rafael Alves Batista, E. Amato, E. O. Angüner, Serguei Vorobiov, 2021, other component parts Abstract: This white paper briefly summarizes the importance of the study of relativistic cosmic rays, both as a constituent of our Universe, and through their impact on stellar and galactic evolution. The focus is on what can be learned over the coming decade through ground-based gamma-ray observations over the 20 GeV to 300 TeV range. Submitted as input to ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium. Keywords: High Energy Astrophysical Phenomena, cosmic rays, supernova remnants, Cherenkov Telescope Array Observatory Published in RUNG: 09.01.2025; Views: 228; Downloads: 4 Full text (7,45 MB) This document has many files! More... |
5. Combined fit of spectrum and composition for FR0 radio-galaxy-emitted ultra–high energy cosmic rays with resulting secondary photons and neutrinosJon Paul Lundquist, Serguei Vorobiov, Lukas Merten, Anita Reimer, Margot Boughelilba, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2025, original scientific article Abstract: This study comprehensively investigates the gamma-ray dim population of Fanaroff–Riley
Type 0 (FR0) radio galaxies as potentially significant sources of ultra–high energy cosmic rays
(UHECRs, E > 10[sup]18 eV) detected on Earth. While individual FR0 luminosities are relatively
low compared to the more powerful Fanaroff–Riley Type 1 and Type 2 galaxies, FR0s are
substantially more prevalent in the local universe, outnumbering the more energetic galaxies
by a factor of ∼5 within a redshift of z ≤ 0.05. Employing CRPropa3 simulations, we estimate
the mass composition and energy spectra of UHECRs originating from FR0 galaxies for energies
above 10[sup]18.6 eV. This estimation fits data from the Pierre Auger Observatory (Auger)
using three extensive air shower models; both constant and energy-dependent observed
elemental fractions are considered. The simulation integrates an approximately isotropic
distribution of FR0 galaxies, extrapolated from observed characteristics, with UHECR
propagation in the intergalactic medium, incorporating various plausible configurations of
extragalactic magnetic fields, both random and structured. We then compare the resulting
emission spectral indices, rigidity cutoffs, and elemental fractions with recent Auger results.
In total, 25 combined energy-spectrum and mass-composition fits are considered. Beyond
the cosmic-ray fluxes emitted by FR0 galaxies, this study predicts the secondary photon and
neutrino fluxes from UHECR interactions with intergalactic cosmic photon backgrounds.
The multimessenger approach, encompassing observational data and theoretical models,
helps elucidate the contribution of low-luminosity FR0 radio galaxies to the total cosmic-ray
energy density. Keywords: ultra-high-energy cosmic rays, UHECRs, UHECR energy spectrum, Pierre Auger Observatory, UHECR mass composition, UHECR sources, extragalactic magnetic fields, UHECR propagation, CRPropa tool Published in RUNG: 06.01.2025; Views: 227; Downloads: 6 Full text (4,14 MB) This document has many files! More... |
6. Large-scale cosmic-ray anisotropies with 19 yr of data from the Pierre Auger ObservatoryA. Abdul Halim, P. Abreu, M. Aglietta, Ingo Allekotte, K. Almeida Cheminant, Jon Paul Lundquist, Shima Ujjani Shivashankara, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article Abstract: We present results of the measurement of large-scale anisotropies in the arrival directions of
ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation,
prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are
reconstructed above 4 EeV in four energy bins. Besides the established dipolar anisotropy in right
ascension above 8 EeV, the Fourier amplitude of the 8–16 EeV energy bin is now also above the 5σ
discovery level. No time variation of the dipole moment above 8 EeV is found, setting an upper limit
to the rate of change of such variations of 0.3% per year at the 95% confidence level. Additionally,
the results for the angular power spectrum are shown, demonstrating no other statistically
significant multipoles. The results for the equatorial dipole component down to 0.03 EeV are
presented, using for the first time a data set obtained with a trigger that has been optimized for
lower energies. Finally, model predictions are discussed and compared with observations, based
on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.6 EeV. Keywords: ultra–high-energy cosmic rays, UHECRs, UHECR anisotropies, Pierre Auger Observatory, dipolar anisotropy in right ascension, Fourier amplitude analysis, angular power spectrum, equatorial dipole component, UHECR source emission scenarios Published in RUNG: 26.11.2024; Views: 416; Downloads: 1 Full text (1,16 MB) This document has many files! More... |
7. Cherenkov Telescope Array potential in the search for Galactic PeVatronsE.O. Angüner, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: One of the major scientific objectives of the future Cherenkov Telescope Array (CTA) Observatory is the search for PeVatrons. PeVatrons are cosmic-ray factories able to accelerate nuclei at least up to the knee feature seen in the spectrum of cosmic rays measured near the Earth. CTA will perform a survey of the full Galactic plane at TeV energies and beyond with unprecedented sensitivity. The determination of efficient criteria to identify PeVatron candidates during the survey is essential in order to trigger further dedicated observations. Here, we present results from a study based on simulations to determine these criteria. The outcome of the study is a PeVatron figure of merit, defined as a metric that provides relations between spectral parameters and spectral cutoff energy lower limits. In addition, simulations of the PeVatron candidate HESS J1641−463 and its parental particle spectrum are presented and discussed. Eventually, our work is applied to simulated population of Galactic PeVatrons, with the aim to determine the sensitivity of CTA. Keywords: Galactic cosmic rays, very-high-energy gamma rays, Galactic PeVatrons, Cherenkov Telescope Array (CTA) Observatory, Galactic plane survey, H.E.S.S. J1641−463 PeVatron candidate Published in RUNG: 08.11.2024; Views: 391; Downloads: 5 Full text (677,22 KB) This document has many files! More... |
8. Prospects for a survey of the galactic plane with the Cherenkov Telescope ArrayK. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, original scientific article Abstract: Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission. Keywords: very-high-energy gamma rays, Cherenkov Telescope Array Observatory, CTAO Galactic Plane Survey, galactic cosmic rays, pulsar wind nebulae, supernova remnants, galactic PeVatrons, binary systems, diffuse emission Published in RUNG: 28.10.2024; Views: 539; Downloads: 0 Full text (4,26 MB) This document has many files! More... |
9. Prospects for ▫$\gamma-ray$▫ observations of the Perseus galaxy cluster with the Cherenkov Telescope ArrayK. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, original scientific article Abstract: Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster’s formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay at γ-ray energies and are predicted to be sources of large-scale γ-ray emission due to hadronic interactions in the intracluster medium (ICM). In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse γ-ray emission from the Perseus galaxy cluster. We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed. In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratio X500 within the characteristic radius R500 down to about X500 < 0.003, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp = 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRp down to about ∆αCRp ≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-based γ-ray DM limits from clusters observations on the velocity- averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models with τχ > 10[sup]27 s for DM masses above 1 TeV. These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario. Keywords: cosmic ray experiments, dark matter experiments, galaxy clusters, gamma ray experiments, very-high energy gamma rays, Cherenkov Telescope Array Observatory, Perseus galaxy cluster Published in RUNG: 09.10.2024; Views: 615; Downloads: 1 Full text (9,26 MB) This document has many files! More... |
10. Multi-messenger astrophysics with the Pierre Auger ObservatoryMassimo Mastrodicasa, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: The Pierre Auger Observatory is sensitive to ultra-high energy neutral particles, such as photons, neutrinos, and neutrons, and can take part in Multi-Messenger searches in collaboration with other observatories. Photons and neutrinos are searched by exploiting the design of the Pierre Auger Observatory and profiting from the different properties of the induced showers caused by different particles. Diffuse and point source fluxes of photons and neutrinos are searched for. Furthermore, photon and neutrino follow-ups of the gravitational wave events observed by the LIGO/Virgo Collaboration are conducted. The Pierre Auger Observatory is also used to search for neutrons from point-like sources. In contrast to photons and neutrinos, neutrons induce air showers that cannot be distinguished from those produced by protons. For this reason, the search for neutrons from a given source is performed by searching for an excess of air showers from the corresponding direction. All these searches have resulted in stringent upper limits on the corresponding fluxes of the considered particles, allowing, together with the results obtained by other experiments, to shed some light on the most energetic phenomena of our Universe. An overview of the Multi-Messenger activities carried out within the Pierre Auger Collaboration is presented. Keywords: ultra-high-energy cosmic rays, UHE photons, UHE neutrinos, UHE neutrons, Pierre Auger Observatory, multi-messenger astrophysical studies Published in RUNG: 04.10.2024; Views: 638; Downloads: 6 Full text (640,80 KB) This document has many files! More... |