Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Voltage-dependent FTIR and 2D infrared spectroscopies within the electric double layer using a plasmonic and conductive electrode
Nan Yang, Matthew J. Ryan, Minjung Son, Andraž Mavrič, Martin Zanni, 2023, original scientific article

Abstract: Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10–20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3–5 nm Al2O3, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages.
Keywords: two-dimensional infrared spectroscopy, infrared transparent substrate, voltage-dependent infrared experiments
Published in RUNG: 24.02.2023; Views: 2023; Downloads: 6
.pdf Full text (6,07 MB)

2.
3.
Amorphous nanocomposite of polycarbosilanes and aluminum oxide
Andraž Mavrič, 2018, doctoral dissertation

Abstract: This work presents a paradigm for high temperature stabilization of bulk amorphous aluminium oxide. The thermodynamic stabilization is achieved by preparing a nanocomposite, where polymethylsilane dendritic molecules are dispersed in an aluminium hydroxide gel. Upon heat-treatment the gel transforms to the amorphous aluminium oxide that is stable up to 900°C. The dispersion of the macromolecules and their covalent bonding to the alumina matrix induce homogeneously distributed strain fields that keep the alumina amorphous. The first part of the thesis focuses on the synthesis, characterization and solubility properties of the dendritic polymethylsilane. The polymethylsilane is synthetized by electrochemical polymerization from trichloromethylsilane monomer. The polymerization mechanism, involving a single polymerization pathway, is identified. The polymer growth proceeds through reduction of the monomers to the silyl anions and their addition to the growing polymer. The solubility of three chemically related but topologically different polysilanes (linear, dendritic and network) were studied by dynamic light scattering. At room temperature the agglomerates in a range from 500 to 1300 nm are present. They undergo de-agglomeration at slightly elevated temperatures of around 40°C. The de-agglomeration results in formation of stable solutions, where a hydrodynamic diameter of the individual polymer molecules was measured to be in a range from 20 to 40 nm. The obtained diameters of two dendritic polymethylsilane macromolecules, synthesized under different electrolysis conditions, are much larger than the theoretical size estimated for an ideal dendrimer. We determined by 29Si NMR that the reason for this is in a large number of branching irregularities (defects) contained in the molecular structure. Combining the experimental values obtained by DLS and density measurements with a structural model that considers the branching irregularities, it is shown that the inclusion of the defects allows the dendritic polymer to exceed the sterical limitations and form the hyperbranched dendritic structure. The final size depends on a relative amount of the branching defects. In the second part, the synthetized polymethylsilane molecules were successfully used for the nanocomposite formation. The aluminium hydroxide gel with the dispersed polymethylsilane molecules was prepared as a precursor. Upon heat-treatment it gives the amorphous aluminium oxide stable up to 900°C. The dispersed macromolecules induce homogeneously distributed strain fields that keep the aluminium oxide amorphous during the thermal treatment the dispersed macromolecules covalently bind to the matrix, inducing the interface strain. The amorphous state was confirmed by the presence of penta-coordinated aluminium detected by 27Al NMR and a low bandgap measured by UV-vis absorption spectroscopy.
Keywords: amorphous aluminium oxide, polymethylsilane, nanocomposite, electropolymerization, solubility, agglomeration, de-agglomeration, dendrimer, hyperbranched dendritic structure, dynamic light scattering, thermal analysis, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, infrared spectroscopy, UV-Vis spectroscopy
Published in RUNG: 19.07.2018; Views: 7398; Downloads: 223
.pdf Full text (5,07 MB)

4.
Extraction of Organochlorine Pesticides from Plastic Pellets and Plastic Type Analysis
Maryline Pflieger, Petra Makorič, Manca Kovač Viršek, Špela Koren, 2017, review article

Abstract: Plastic resin pellets, categorized as microplastics (≤5 mm in diameter), are small granules that can be unintentionally released to the environment during manufacturing and transport. Because of their environmental persistence, they are widely distributed in the oceans and on beaches all over the world. They can act as a vector of potentially toxic organic compounds (e.g., polychlorinated biphenyls) and might consequently negatively affect marine organisms. Their possible impacts along the food chain are not yet well understood. In order to assess the hazards associated with the occurrence of plastic pellets in the marine environment, it is necessary to develop methodologies that allow for rapid determination of associated organic contaminant levels. The present protocol describes the different steps required for sampling resin pellets, analyzing adsorbed organochlorine pesticides (OCPs) and identifying the plastic type. The focus is on the extraction of OCPs from plastic pellets by means of a pressurized fluid extractor (PFE) and on the polymer chemical analysis applying Fourier Transform-InfraRed (FT-IR) spectroscopy. The developed methodology focuses on 11 OCPs and related compounds, including dichlorodiphenyltrichloroethane (DDT) and its two main metabolites, lindane and two production isomers, as well as the two biologically active isomers of technical endosulfan. This protocol constitutes a simple and rapid alternative to existing methodology for evaluating the concentration of organic contaminants adsorbed on plastic pieces.
Keywords: Environmental Sciences, Issue 125, Microplastics, resin pellets, pesticides, persistent organic pollutants, organochlorine pesticides, dichlorodiphenyltrichloroethane, endosulfan, hexachlorocyclohexane, lindane, Fourier transform infrared spectroscopy, pressurized fluid extractor
Published in RUNG: 10.07.2017; Views: 5484; Downloads: 0

Search done in 0.02 sec.
Back to top