Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 2 / 2
First pagePrevious page1Next pageLast page
Selenium affects mercury ligand environment in terrestrial food chain – a XAS study
Katarina Vogel Mikuš, Alojz Kodre, Iztok Arčon, Anja Kavčič, 2022, published scientific conference contribution abstract

Abstract: Selenium (Se) supplied in inorganic form (as selenate or selenite) was shown to decrease mercury (Hg) toxicity by forming HgSe in soils as well as in animal and human tissues, while for plants there is no evidence of Hg-Se complexation. Although Se in not an essential element for plants it was shown to counteract various abiotic stresses when applied at trace amounts. The aim of this work was therefore to study physiological responses and Hg speciation in plant/ fungi-animal food chain. Lettuce (Lactuca sativa) and porcini mushrooms (Boletus edulis) were taken as model plant/ fungal species and Spanish slug (Arion vulgaris) as a model animal species. The plants, fed to the slugs, were grown in HgCl2 contaminated soil or soil from the vicinity of Hg mine in Idrija with traces of HgS and methyl Hg). Physiological parameters of plants and slugs were monitored during the experiment. At the end the biological material was frozen in LN2 and freeze dried. Hg L3-edge (12284 eV) XANES and EXAFS spectra of the biological samples and standards were measured at liquid helium temperature in fluorescence detection mode at the BM30B beamline of the ESRF synchrotron in Grenoble, using the 30-segment germanium solid state detector [1]. The results showed that addition of Se alleviated Hg toxic effects in the food chain started at HgCl2-contaminated soil, while for the soil from Idrija, containing low amounts of highly toxic methyl-Hg, the beneficial effect was less prominent [2]. No Hg-Se complexes were detected in plants, while in mushrooms and slugs the complexation was confirmed. Addition of Se to the plants, however, changed Hg ligand environment in plant tissues from sulphur to nitrogen ligands. Hg and Se both target the -SH functional groups in the plant tissues, so toxic effects of Hg are rather enhanced than alleviated by addition of Se. Nevertheless, the addition of Se to the plants is beneficial for higher trophic levels and lowers Hg toxicity for the primary consumers, the slugs.
Keywords: mercury, toxicity, ligand environment, XANES, EXAFS, food chain, plant, slug, fungi
Published in RUNG: 05.12.2022; Views: 1463; Downloads: 0
This document has many files! More...

Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure
Alojz Kodre, Iztok Arčon, Marta Debeljak, Mateja Potisek, Matevž Likar, Katarina Vogel-Mikuš, 2017, original scientific article

Abstract: Mercury (Hg) – plant – fungal interactions are only poorly studied. Hg speciation and ligand environment in maize roots inoculated with arbuscular mycorrhizal (AM) fungi were investigated in order to better understand the role of AM in Hg soil to root transfer. The maize plants were grown in Hg polluted substrate (50 mg g1 as dissolved HgCl2) and inoculated with AM fungi originating from: a) highly Hg polluted environment of a former Hg smelting site in Idrija, Slovenia, (Glomus sp. – sample AmI), and b) non-polluted environment (commercial AM inoculum Symbivit1 – sample AmC). Hg speciation and ligand environment in maize roots was studied by Hg-L3 XANES and EXAFS with emphasis on XAS methodology – modelling and fitting the XAFS spectra to extract in a reliable way as much information on Hg coordination as possible. The AmI plants developed more arbuscules and less vesicles than the AmC plants, and also accumulated more Hg in the roots. A clear difference in Hg coordination between the AM (AmC & AmI) and the control (ConC & ConI) plants is recognized in Hg L3-edge EXAFS analysis: in the ConC & ConI maize roots 73–80% of Hg is attached between two sulphur atoms at the distance of 2.34 Å. The remaining ligand is nitrogen at 2.04 Å. In AmI & AmC roots another Hg-S attachment encompassing four thiol groups at the S-distance of 2.50 Å are identified, accounting for 21–26%. AM fungi can modify Hg ligand environment in plant roots, thus playing an important role in biogeochemical cycling of Hg in terrestrial ecosystems.
Keywords: EXAFS XANES Arbuscular mycorrhiza Phytoremediation Toxicity Hg coordination Ligand environment
Published in RUNG: 27.09.2016; Views: 6308; Downloads: 0
This document has many files! More...

Search done in 0.01 sec.
Back to top